瀏覽紀錄

TOP
1/1
無庫存,下單後進貨(採購期約45個工作天)
高等數學(上)(英文)(簡體書)
  • 高等數學(上)(英文)(簡體書)

  • ISBN13:9787122346971
  • 出版社:化學工業出版社
  • 作者:潘斌;牛宏;陳麗
  • 裝訂/頁數:平裝/280頁
  • 規格:24cm*17cm (高/寬)
  • 版次:1版
  • 出版日:2019/09/01
人民幣定價:78元
定  價:NT$468元
優惠價: 87407
可得紅利積點:12 點

無庫存,下單後進貨(採購期約45個工作天)

商品簡介

作者簡介

目次

本書是根據教育部非數學專業數學基礎課教學指導分委員會制定的工科類本科數學基礎課程教學基本要求編寫的全英文教材,全書分為上、下兩冊。本書為上冊,主要包括函數與極限,一元函數微積分及其應用和微分方程三部分。本書對基本概念的敘述清晰準確,對基本理論的論述簡明易懂,例題習題的選配典型多樣,強調基本運算能力的培養及理論的實際應用。本書可作為高等理工科院校非數學類專業本科生的教材,也可供其他專業選用和社會讀者閱讀。
The aim of this book is to meet the requirement of bilingual teaching of advanced mathematics. The selection of the contents is in accordance with the fundamental requirements of teaching issued by the Ministry of Education of China. Base on the property of our university,we select some examples about petrochemical industry. These examples may help readers to understand the application of advanced mathematics in petrochemical industry. This book is divided into two volumes. This volume contains functions and limits, calculus of functions of a single variable and differential equation. Basic concepts in this book are clear and accurate. The book introduce the fundamental theories by a method that is easy for understanding. This book can be used as a textbook for undergraduate students in the science and engineering schools whose majors are not mathematics, and may also be suitable to the readers at the same level.
潘斌,遼寧石油化工大學理學院,副院長,副教授,潘斌簡歷:2000.09-2004.06 遼寧石油化工大學信息與計算科學系,學士2005.09-2011.06 浙江大學應用數學系,碩士、博士2011.07-2015.05 遼寧石油化工大學,講師2015.06-至今 遼寧石油化工大學,副教授
Chapter 1 Functions and limits1

1.1Mappings and functions1

1.1.1Sets1

1.1.2Mappings4

1.1.3Functions5

Exercises 1-1 19

1.2Limits of sequences23

1.2.1Concept of limits of sequences23

1.2.2Properties of convergent sequences27

Exercises 1-2 29

1.3Limits of functions30

1.3.1Definitions of limits of functions30

1.3.2The properties of functional limits33

Exercises 1-3 34

1.4Infinitesimal and infinity quantity36

1.4.1Infinitesimal quantity36

1.4.2Infinity quantity36

Exercises 1-4 38

1.5Rules of limit operations38

Exercises 1-5 43

1.6Principle of limit existence―two important limits44

Exercises 1-6 49

1.7Comparing with two infinitesimals50

Exercises 1-7 52

1.8Continuity of functions and discontinuous points52

1.8.1Continuity of functions52

1.8.2Discontinuous points of functions54

Exercises 1-8 56

1.9Operations on continuous functions and the continuity of elementary functions57

1.9.1Continuity of the sum,difference,product and quotient of continuous functions57

1.9.2Continuity of inverse functions and composite functions58

1.9.3Continuity of elementary functions59

Exercises 1-9 59

1.10Properties of continuous functions on a closed interval60

1.10.1Boundedness and maximum-minimum theorem60

1.10.2Zero point theorem and intermediate value theorem61

*1.10.3Uniform continuity62

Exercises 1-10 63

Exercises 1 63



Chapter 2 Derivatives and differential66

2.1Concept of derivatives66

2.1.1Examples66

2.1.2Definition of derivatives70

2.1.3Geometric interpretation of derivative77

2.1.4Relationship between derivability and continuity78

Exercises 2-1 79

2.2Fundamental derivation rules81

2.2.1Derivation rules for sum,difference,product and quotient of functions81

2.2.2The rules of derivative of inverse functions83

2.2.3The rules of derivative of composite functions(The Chain Rule)85

2.2.4Basic derivation rules and derivative formulas89

Exercises 2-2 91

2.3Higher-order derivatives93

Exercises 2-3 95

2.4Derivation of implicit functions and functions defined by parametric equations97

2.4.1Derivation of implicit functions97

2.4.2Derivation of a function defined by parametric equations101

2.4.3Related rates of change103

Exercises 2-4 103

2.5The Differentials of functions105

2.5.1Concept of the differential105

2.5.2Geometric meaning of the differential107

2.5.3Formulas and rules on differentials108

2.5.4Application of the differential in approximate computation109

Exercises 2-5 110

Exercises 2 111



Chapter 3 Mean value theorems in differential calculus and applications of derivatives113

3.1Mean value theorems in differential calculus113

Exercises 3-1 120

3.2L'Hospital's rules121

Exercises 3-2 125

3.3Taylor formula126

Exercises 3-3 130

3.4Monotonicity of functions and convexity of curves131

3.4.1Monotonicity of functions131

3.4.2Convexity of curves and inflection points132

Exercises 3-4 136

3.5Extreme values of functions, maximum and minimum137

3.5.1Extreme values of functions137

3.5.2Maximum and minimum of function140

Exercises 3-5 143

3.6Differentiation of arc and curvature145

3.6.1Differentiation of an arc145

3.6.2curvature146

Exercises 3-6 149

Exercises 3 149



Chapter 4 Indefinite integral151

4.1Concept and property of indefinite integral151

4.1.1Concept of antiderivative and indefinite integral151

4.1.2Table of fundamental indefinite integrals153

4.1.3Properties of the indefinite integral155

Exercises 4-1 157

4.2Integration by substitutions158

4.2.1Integration by substitution of the first kind158

4.2.2Integration by substitution of the second kind163

Exercises 4-2 167

4.3Integration by parts169

Exercises 4-3 173

4.4Integration of rational function173

4.4.1Integration of rational function173

4.4.2Integration which can be transformed into the integration of rational function175

Exercises 4-4 177

Exercises 4 178



Chapter 5 Definite integrals180

5.1Concept and properties of definite integrals180

5.1.1Examples of definite integral problems180

5.1.2The definition of define integral182

5.1.3Properties of definite integrals184

Exercises 5-1 186

5.2Fundamental formula of calculus188

5.2.1The relationship between the displacement and the velocity188

5.2.2A function of upper limit of integral188

5.2.3Newton-Leibniz formula189

Exercises 5-2 192

5.3Integration by substitution and parts for definite integrals194

5.3.1Integration by substitution for definite integrals194

5.3.2Integration by parts for definite integral198

Exercises 5-3 199

5.4Improper integrals201

5.4.1Improper integrals on an infinite interval201

5.4.2Improper integrals of unbounded functions203

Exercises 5-4 205

5.5Tests for convergence of improper integrals Γ-function206

5.5.1Test for convergence of infinite integral206

5.5.2Test for convergence of improper integrals of unbounded functions209

5.5.3 Γ-function209

Exercises 5-5 211

Exercises 5 212



Chapter 6 Applications of definite integrals214

6.1Method of elements for definite integrals214

6.2The applications of the definite integral in geometry215

6.2.1Areas of plane figures215

6.2.2The volumes of solid219

6.2.3Length of plane curves222

Exercises 6-2 224

6.3The applications of the definite Integral in physics227

6.3.1Work done by variable force227

6.3.2Force by a liquid228

6.3.3Gravity229

Exercises 6-3 230

Exercises 6 230



Chapter 7 Differential equations232

7.1Differential equations and their solutions232

Exercises 7-1 236

7.2Separable equations237

Exercises 7-2 240

7.3Homogeneous equations241

7.3.1Homogeneous equations241

7.3.2Reduction to homogeneous equation243

Exercises 7-3 245

7.4A first-order linear differential equations245

7.4.1Linear equations245

7.4.2Bernoulli's equation248

Exercises 7-4 249

7.5Reducible second-order equations250

Exercises 7-5 254

7.6Second-order linear equations254

7.6.1Construction of solutions of second-order linear equation254

7.6.2The method of variation of parameters257

Exercises 7-6 259

7.7Homogeneous linear differential equation with constant coefficients259

Exercises 7-7 263

7.8Nonhomogeneous linear differential equation with constant coefficients264

Exercises 7-8 270

7.9Euler's differential equation270

Exercises 7-9 271

Exercises 7 271



Appendix273



References280

購物須知

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。

無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約20個工作天;
海外無庫存之書籍,平均作業時間約45個工作天,然不保證確定可調到貨,尚請見諒。