TOP
0
0
古典詩詞的女兒-葉嘉瑩
信息檢索導論(修訂版)(簡體書)
滿額折

信息檢索導論(修訂版)(簡體書)

商品資訊

人民幣定價:99 元
定價
:NT$ 594 元
優惠價
87517
海外經銷商無庫存,到貨日平均30天至45天
下單可得紅利積點:15 點
商品簡介
作者簡介
目次
相關商品

商品簡介

本書是信息檢索的教材,旨在從計算機科學的視角提供一種現代的信息檢索方法。書中從基本概念講解網絡搜索以及文本分類和文本聚類等,對收集、索引和搜索文檔系統的設計和實現的方方面面、評估系統的方法、機器學習方法在文本收集中的應用等給出了最新的講解。

作者簡介

王斌,博士,小米公司AI實驗室NLP方向首席科學家,前中國科學院信息工程研究所研究員、博導、中國科學院大學教授。主持國家973、863、國家自然科學基金、國際合作基金、部委及企業合作等課題20余項,在包括SIGIR、CIKM、ACL、EMNLP、AAAI、IJCAI、TKDE等在內的會議和刊物上發表學術論文150餘篇。擔任SIGIR、ACL、CIKM、WWW、IJCAI等會議的程序委員會委員,同時是中國計算機學會高級會員、中國中文信息學會理事、中文信息學會信息檢索專業委員會委員及《中文信息學報》編委。自2006年起在中國科學院研究生院講授“現代信息檢索”研究生課程,迄今培養博士、碩士研究生80余名。
李鵬,博士,中國科學院信息工程研究所高級工程師,碩士生導師。主持國家重點研發計劃、國家自然科學基金青年基金、部委合作項目10余項,在包括SIGIR、CIKM、ECIR等會議上發表論文20餘篇,獲得省部級科技獎1項,並以負責人身份研製了多個實際應用系統。現為中國中文信息學會青年工作委員會委員。

目次

第1章 布爾檢索 1
1.1 一個信息檢索的例子 2
1.2 構建倒排索引的初體驗 5
1.3 布爾查詢的處理 8
1.4 對基本布爾操作的擴展及有序檢索 11
1.5 參考文獻及補充讀物 13
第2章 詞項詞典及倒排記錄表 14
2.1 文檔分析及編碼轉換 14
2.1.1 字符序列的生成 14
2.1.2 文檔單位的選擇 16
2.2 詞項集合的確定 16
2.2.1 詞條化 16
2.2.2 去除停用詞 19
2.2.3 詞項歸一化 20
2.2.4 詞幹還原和詞形歸併 23
2.3 基於跳表的倒排記錄表快速合併算法 26
2.4 含位置信息的倒排記錄表及短語查詢 28
2.4.1 二元詞索引 28
2.4.2 位置信息索引 29
2.4.3 混合索引機制 31
2.5 參考文獻及補充讀物 32
第3章 詞典及容錯式檢索 34
3.1 詞典搜索的數據結構 34
3.2 通配符查詢 36
3.2.1 一般的通配符查詢 37
3.2.2 支持通配符查詢的k-gram索引 38
3.3 拼寫校正 39
3.3.1 拼寫校正的實現 39
3.3.2 拼寫校正的方法 40
3.3.3 編輯距離 40
3.3.4 拼寫校正中的 k-gram索引 42
3.3.5 上下文敏感的拼寫校正 43
3.4 基於發音的校正技術 44
3.5 參考文獻及補充讀物 45
第4章 索引構建 46
4.1 硬件基礎 46
4.2 基於塊的排序索引方法 47
4.3 內存式單遍掃描索引構建方法 50
4.4 分布式索引構建方法 51
4.5 動態索引構建方法 54
4.6 其他索引類型 56
4.7 參考文獻及補充讀物 57
第5章 索引壓縮 59
5.1 信息檢索中詞項的統計特性 59
5.1.1 Heaps定律:詞項數目的估計 61
5.1.2 Zipf定律:對詞項的分佈建模 62
5.2 詞典壓縮 63
5.2.1 將詞典看成單一字符串的壓縮方法 63
5.2.2 按塊存儲 64
5.3 倒排記錄表的壓縮 66
5.3.1 可變字節碼 67
5.3.2 γ編碼 68
5.4 參考文獻及補充讀物 74
第6章 文檔評分、詞項權重計算及向量空間模型 76
6.1 參數化索引及域索引 76
6.1.1 域加權評分 78
6.1.2 權重學習 79
6.1.3 最優權重g 的計算 80
6.2 詞項頻率及權重計算 81
6.2.1 逆文檔頻率 81
6.2.2 tf-idf 權重計算 82
6.3 向量空間模型 83
6.3.1 內積 83
6.3.2 查詢向量 86
6.3.3 向量相似度計算 87
6.4 其他tf-idf 權重計算方法 88
6.4.1 tf的亞線性尺度變換方法 88
6.4.2 基於最大值的tf歸一化 88
6.4.3 文檔權重和查詢權重機制 89
6.4.4 文檔長度的回轉歸一化 89
6.5 參考文獻及補充讀物 92
第7章 一個完整搜索系統中的評分計算 93
7.1 快速評分及排序 93
7.1.1 非精確返回前K篇文檔的方法 94
7.1.2 索引去除技術 94
7.1.3 勝者表 95
7.1.4 靜態得分和排序 95
7.1.5 影響度排序 96
7.1.6 簇剪枝方法 97
7.2 信息檢索系統的組成 98
7.2.1 層次型索引 98
7.2.2 查詢詞項的鄰近性 98
7.2.3 查詢分析及文檔評分函數的設計 99
7.2.4 搜索系統的組成 100
7.3 向量空間模型對各種查詢操作的支持 101
7.3.1 布爾查詢 101
7.3.2 通配符查詢 102
7.3.3 短語查詢 102
7.4 參考文獻及補充讀物 102
第8章 信息檢索的評價 103
8.1 信息檢索系統的評價 103
8.2 標準測試集 104
8.3 無序檢索結果集合的評價 105
8.4 有序檢索結果的評價方法 108
8.5 相關性判定 112
8.6 更廣的視角看評價:系統質量及用戶效用 115
8.6.1 系統相關問題 115
8.6.2 用戶效用 115
8.6.3 對已有系統的改進 116
8.7 結果片段 116
8.8 參考文獻及補充讀物 118
第9章 相關反饋及查詢擴展 120
9.1 相關反饋及偽相關反饋 120
9.1.1 Rocchio相關反饋算法 122
9.1.2 基於概率的相關反饋方法 125
9.1.3 相關反饋的作用時機 125
9.1.4 Web上的相關反饋 126
9.1.5 相關反饋策略的評價 127
9.1.6 偽相關反饋 127
9.1.7 間接相關反饋 128
9.1.8 小結 128
9.2 查詢重構的全域方法 128
9.2.1 查詢重構的詞匯表工具 128
9.2.2 查詢擴展 129
9.2.3 同義詞詞典的自動構建 130
9.3 參考文獻及補充讀物 131
第10章 XML檢索 133
10.1 XML的基本概念 134
10.2 XML檢索中的挑戰性問題 137
10.3 基於向量空間模型的XML檢索 140
10.4 XML檢索的評價 144
10.5 XML檢索:以文本為中心與以數據為中心的對比 146
10.6 參考文獻及補充讀物 148
第11章 概率檢索模型 150
11.1 概率論基礎知識 150
11.2 概率排序原理 151
11.2.1 1/0風險的情況 151
11.2.2 基於檢索代價的概率排序原理 152
11.3 二值獨立模型 152
11.3.1 排序函數的推導 153
11.3.2 理論上的概率估計方法 155
11.3.3 實際中的概率估計方法 156
11.3.4 基於概率的相關反饋方法 157
11.4 概率模型的相關評論及擴展 158
11.4.1 概率模型的評論 158
11.4.2 詞項之間的樹型依賴 159
11.4.3 Okapi BM25:一個非二值的模型 160
11.4.4 IR中的貝葉斯網絡方法 161
11.5 參考文獻及補充讀物 162
第12章 基於語言建模的信息檢索模型 163
12.1 語言模型 163
12.1.1 有窮自動機和語言模型 163
12.1.2 語言模型的種類 165
12.1.3 詞的多項式分佈 166
12.2 查詢似然模型 167
12.2.1 IR中的查詢似然模型 167
12.2.2 查詢生成概率的估計 167
12.2.3 Ponte和Croft進行的實驗 169
12.3 語言建模的方法與其他檢索方法的比較 171
12.4 擴展的LM方法 172
12.5 參考文獻及補充讀物 173
第13章 文本分類及樸素貝葉斯方法 175
13.1 文本分類問題 177
13.2 樸素貝葉斯文本分類 178
13.3 伯努利模型 182
13.4 NB的性質 183
13.5 特徵選擇 188
13.5.1 互信息 188
13.5.2 統計量 191
13.5.3 基於頻率的特徵選擇方法 192
13.5.4 多類問題的特徵選擇方法 193
13.5.5 不同特徵選擇方法的比較 193
13.6 文本分類的評價 194
13.7 參考文獻及補充讀物 199
第14章 基於向量空間模型的文本分類 200
14.1 文檔表示及向量空間中的關聯度計算 201
14.2 Rocchio分類方法 202
14.3 k近鄰分類器 205
14.4 線性及非線性分類器 209
14.5 多類問題的分類 212
14.6 偏差―方差折中準則 214
14.7 參考文獻及補充讀物 219
第15章 支持向量機及文檔機器學習方法 221
15.1 二類線性可分條件下的支持向量機 221
15.2 支持向量機的擴展 226
15.2.1 軟間隔分類 226
15.2.2 多類情況下的支持向量機 228
15.2.3 非線性支持向量機 228
15.2.4 實驗結果 230
15.3 有關文本文檔分類的考慮 231
15.3.1 分類器類型的選擇 232
15.3.2 分類器效果的提高 233
15.4 ad hoc檢索中的機器學習方法 236
15.4.1 基於機器學習評分的簡單例子 236
15.4.2 基於機器學習的檢索結果排序 238
15.5 參考文獻及補充讀物 239
第16章 扁平聚類 241
16.1 信息檢索中的聚類應用 242
16.2 問題描述 244
16.3 聚類算法的評價 246
16.4 K-均值算法 248
16.5 基於模型的聚類 254
16.6 參考文獻及補充讀物 258
第17章 層次聚類 260
17.1 凝聚式層次聚類 260
17.2 單連接及全連接聚類算法 263
17.3 組平均凝聚式聚類 268
17.4 質心聚類 269
17.5 層次凝聚式聚類的最優性 270
17.6 分裂式聚類 272
17.7 簇標簽生成 273
17.8 實施中的注意事項 274
17.9 參考文獻及補充讀物 275
第18章 矩陣分解及隱性語義索引 277
18.1 線性代數基礎 277
18.2 詞項―文檔矩陣及SVD 280
18.3 低秩逼近 282
18.4 LSI 284
18.5 參考文獻及補充讀物 288
第19章 Web搜索基礎 289
19.1 背景和歷史 289
19.2 Web的特性 290
19.2.1 Web圖 291
19.2.2 作弊網頁 293
19.3 廣告經濟模型 294
19.4 搜索用戶體驗 296
19.5 索引規模及其估計 297
19.6 近似重複及搭疊 300
19.7 參考文獻及補充讀物 303
第20章 Web採集及索引 304
20.1 概述 304
20.1.1 採集器必須提供的功能特點 304
20.1.2 採集器應該提供的功能特點 304
20.2 採集 305
20.2.1 採集器架構 305
20.2.2 DNS解析 308
20.2.3 待採集URL池 309
20.3 分布式索引 311
20.4 連接服務器 312
20.5 參考文獻及補充讀物 314
第21章 鏈接分析 316
T21.1 Web圖T 316
T21.2 PageRankT 318
21.2.1 馬爾科夫鏈 318
21.2.2 PageRank的計算 320
21.2.3 T面向主題的PageRankT 322
T21.3 Hub網頁及Authority網頁T 325
T21.4 參考文獻及補充讀物T 329
參考文獻 331
索引 356

您曾經瀏覽過的商品

購物須知

大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。

特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。

無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:87 517
海外經銷商無庫存,到貨日平均30天至45天

暢銷榜

客服中心

收藏

會員專區