This is the expanded notes of a course intended to introduce students specializing in mathematics to some of the central ideas of traditional economics. The book should be readily accessible to anyone with some training in university mathematics; more advanced mathematical tools are explained in the appendices. Thus this text could be used for undergraduate mathematics courses or as supplementary reading for students of mathematical economics.
The p-adic numbers, the earliest of local fields, were introduced by Hensel some 70 years ago as a natural tool in algebra number theory. Today the use of this and other local fields pervades much of mathematics, yet these simple and natural concepts, which often provide remarkably easy solutions to complex problems, are not as familiar as they should be. This book, based on postgraduate lectures at Cambridge, is meant to rectify this situation by providing a fairly elementary and self-contained introduction to local fields. After a general introduction, attention centres on the p-adic numbers and their use in number theory. There follow chapters on algebraic number theory, diophantine equations and on the analysis of a p-adic variable. This book will appeal to undergraduates, and even amateurs, interested in number theory, as well as to graduate students.
The number theoretic properties of curves of genus 2 are attracting increasing attention. This book provides new insights into this subject; much of the material here is entirely new, and none has appeared in book form before. Included is an explicit treatment of the Jacobian, which throws new light onto the geometry of the Kummer surface. The Mordell–Weil group can then be determined for many curves, and in many non-trivial cases all rational points can be found. The results exemplify the power of computer algebra in diophantine contexts, but computer expertise is not assumed in the main text. Number theorists, algebraic geometers and workers in related areas will find that this book offers unique insights into the arithmetic of curves of genus 2.
This tract sets out to give some idea of the basic techniques and of some of the most striking results of Diophantine approximation. A selection of theorems with complete proofs are presented, and Cassels also provides a precise introduction to each chapter, and appendices detailing what is needed from the geometry of numbers and linear algebra. Some chapters require knowledge of elements of Lebesgue theory and algebraic number theory. This is a valuable and concise text aimed at the final-year undergraduate and first-year graduate student.
The study of (special cases of) elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centres of research in number theory. This book, which is addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Weil finite basis theorem, points of finite order (Nagell-Lutz) etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the 'Riemann hypothesis for function fields') and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no
This exploration of quadratic forms over rational numbers and rational integers offers an elementary introduction that includes recent developments. Topics include the theory of quadratic forms over l