This is a reprint of a work published in 1987, by John Wiley & Sons, with a brief new preface by the two authors and a new supplementary bibliography aimed at helping readers track recent trends i
The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
This is not a traditional work on topological graph theory. No current graph or voltage graph adorns its pages. Its readers will not compute the genus (orientable or non-orientable) of a single non-pl
Introduction to Chemical Graph Theory is a concise introduction to the main topics and techniques in chemical graph theory, specifically the theory of topological indices. These include distance-based
This book introduces polyhedra as a tool for graph theory and discusses their properties and applications in solving the Gauss crossing problem. The discussion is extended to embeddings on manifolds,
Originally published in 1989, this is an advanced text and research monograph on groups acting on low-dimensional topological spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts which require knowledge of homological algebra and algebraic topology. This book is essential reading for anyone contemplating working in the subject.
This is a memorial volume to the distinguished Canadian-born mathematician Hugh Dowker, one of the most highly regarded topologists in the United Kingdom and sometime Professor at Birkbeck College, London. The volume comprises specially written articles on various topological topics by experts in many countries who worked with Dowker at one time or another. These include survey, expository and research articles on general topology, algebraic topology and related subjects such as knot theory and graph theory. The volume will be of great interest to graduate students and professional mathematicians whose speciality is topology, in all its aspects.
The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of
The famous Circuit Double Cover conjecture (and its numerous variants) is considered one of the major open problems in graph theory owing to its close relationship with topological graph theory, integer flow theory, graph coloring and the structure of snarks. It is easy to state: every 2-connected graph has a family of circuits covering every edge precisely twice. C.-Q. Zhang provides an up-to-date overview of the subject containing all of the techniques, methods and results developed to help solve the conjecture since the first publication of the subject in the 1940s. It is a useful survey for researchers already working on the problem and a fitting introduction for those just entering the field. The end-of-chapter exercises have been designed to challenge readers at every level and hints are provided in an appendix.
Originally published in 1989, this is an advanced text and research monograph on groups acting on low-dimensional topological spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts which require knowledge of homological algebra and algebraic topology. This book is essential reading for anyone contemplating working in the subject.