Engineering Genetic Circuits
商品資訊
ISBN13:9781420083248
出版社:Taylor & Francis
作者:Chris J. Myers
出版日:2009/07/24
裝訂/頁數:精裝/306頁
規格:24.8cm*16.5cm*1.9cm (高/寬/厚)
定價
:NT$ 5524 元優惠價
:90 折 4972 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
目次
相關商品
商品簡介
An Introduction to Systems BioengineeringTakes a Clear and Systematic Engineering Approach to Systems Biology
Focusing on genetic regulatory networks, Engineering Genetic Circuits presents the modeling, analysis, and design methods for systems biology. It discusses how to examine experimental data to learn about mathematical models, develop efficient abstraction and simulation methods to analyze these models, and use analytical methods to guide the design of new circuits.
After reviewing the basic molecular biology and biochemistry principles needed to understand genetic circuits, the book describes modern experimental techniques and methods for discovering genetic circuit models from the data generated by experiments. The next four chapters present state-of-the-art methods for analyzing these genetic circuit models. The final chapter explores how researchers are beginning to use analytical methods to design synthetic genetic circuits.
This text clearly shows how the success of systems biology depends on collaborations between engineers and biologists. From biomolecular observations to mathematical models to circuit design, it provides essential information on genetic circuits and engineering techniques that can be used to study biological systems.
Focusing on genetic regulatory networks, Engineering Genetic Circuits presents the modeling, analysis, and design methods for systems biology. It discusses how to examine experimental data to learn about mathematical models, develop efficient abstraction and simulation methods to analyze these models, and use analytical methods to guide the design of new circuits.
After reviewing the basic molecular biology and biochemistry principles needed to understand genetic circuits, the book describes modern experimental techniques and methods for discovering genetic circuit models from the data generated by experiments. The next four chapters present state-of-the-art methods for analyzing these genetic circuit models. The final chapter explores how researchers are beginning to use analytical methods to design synthetic genetic circuits.
This text clearly shows how the success of systems biology depends on collaborations between engineers and biologists. From biomolecular observations to mathematical models to circuit design, it provides essential information on genetic circuits and engineering techniques that can be used to study biological systems.
作者簡介
Chris J. Myers is a professor in the Department of Electrical and Computer Engineering at the University of Utah. A co-inventor on four patents and author of more than 80 technical papers and the textbook Asynchronous Circuit Design, Dr. Myers received an NSF Fellowship in 1991 and an NSF CAREER award in 1996. His research interests include formal verification, asynchronous circuit design, and the analysis and design of genetic regulatory circuits.
目次
An Engineer’s Guide to Genetic Circuits
Chemical Reactions
Macromolecules
Genomes
Cells and Their Structure
Genetic Circuits
Viruses
Phage lambda: A Simple Genetic Circuit
Learning Models
Experimental Methods
Experimental Data
Cluster Analysis
Learning Bayesian Networks
Learning Causal Networks
Experimental Design
Differential Equation Analysis
A Classical Chemical Kinetic Model
Differential Equation Simulation
Qualitative ODE Analysis
Spatial Methods
Stochastic Analysis
A Stochastic Chemical Kinetic Model
The Chemical Master Equation
Gillespie’s Stochastic Simulation Algorithm
Gibson/Bruck’s Next Reaction Method
Tau-Leaping
Relationship to Reaction Rate Equations
Stochastic Petri-Nets
Phage lambda Decision Circuit Example
Spatial Gillespie
Reaction-Based Abstraction
Irrelevant Node Elimination
Enzymatic Approximations
Operator Site Reduction
Statistical Thermodynamical Model
Dimerization Reduction
Phage lambda Decision Circuit Example
Stoichiometry Amplification
Logical Abstraction
Logical Encoding
Piecewise Models
Stochastic Finite-State Machines
Markov Chain Analysis
Qualitative Logical Models
Genetic Circuit Design
Assembly of Genetic Circuits
Combinational Logic Gates
PoPS Gates
Sequential Logic Circuits
Future Challenges
Solutions to Selected Problems
References
Glossary
Index
Sources and Problems appear at the end of each chapter.
Chemical Reactions
Macromolecules
Genomes
Cells and Their Structure
Genetic Circuits
Viruses
Phage lambda: A Simple Genetic Circuit
Learning Models
Experimental Methods
Experimental Data
Cluster Analysis
Learning Bayesian Networks
Learning Causal Networks
Experimental Design
Differential Equation Analysis
A Classical Chemical Kinetic Model
Differential Equation Simulation
Qualitative ODE Analysis
Spatial Methods
Stochastic Analysis
A Stochastic Chemical Kinetic Model
The Chemical Master Equation
Gillespie’s Stochastic Simulation Algorithm
Gibson/Bruck’s Next Reaction Method
Tau-Leaping
Relationship to Reaction Rate Equations
Stochastic Petri-Nets
Phage lambda Decision Circuit Example
Spatial Gillespie
Reaction-Based Abstraction
Irrelevant Node Elimination
Enzymatic Approximations
Operator Site Reduction
Statistical Thermodynamical Model
Dimerization Reduction
Phage lambda Decision Circuit Example
Stoichiometry Amplification
Logical Abstraction
Logical Encoding
Piecewise Models
Stochastic Finite-State Machines
Markov Chain Analysis
Qualitative Logical Models
Genetic Circuit Design
Assembly of Genetic Circuits
Combinational Logic Gates
PoPS Gates
Sequential Logic Circuits
Future Challenges
Solutions to Selected Problems
References
Glossary
Index
Sources and Problems appear at the end of each chapter.
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。