TOP
0
0
購書領優惠,滿額享折扣!
金融市場用的數學方法(簡體書)
滿額折

金融市場用的數學方法(簡體書)

商品資訊

人民幣定價:99 元
定價
:NT$ 594 元
優惠價
87517
缺貨無法訂購
商品簡介
作者簡介
名人/編輯推薦
目次
相關商品

商品簡介

數學金融已經成長為一個龐大的分支,故而需要大量的數學工具作為支持。本書同時將金融方法和相關的數學工具以數學的嚴謹和數學家易于理解的方式加以表達。書中將金融概念如套利機會、容許策略、索取權、期權定價和拖欠風險和數學理論,如布朗運動、擴散過程和Levy過程等交叉講述。前半部分講述了連續路徑過程,后半部分進而講述了不連續過程。擴充參數文獻包括大量的參考資料和作者索引,使得讀者能夠很快找到書中引用資料的來源,這對初學者和相關科研實踐人員都是彌足珍貴的。

 

作者簡介

作者:(法國)M.布蘭科(Monique Jeanblanc)

名人/編輯推薦

《金融市場用的數學方法》由世界圖書出版公司北京公司出版。

目次

Part Ⅰ Continuous Path Processes
1 Continuous-Path Random Processes: Mathematical
Prerequisites
1.1Some Definitions
1.1.1Measurability
1.1.2Monotone Class Theorem
1.1.3Probability Measures
1.1.4Filtration
1.1.5Law of a R,andom Variable, Expectation
1.1.6Independence
1.1.7Equivalent Probabilities and R,adon-Nikodym Densities
1.1.8Construction of Simple.Probability Spaces
1.2Martingales
1.2.1Definition and Main Properties
1.2.2 Spaces of Martingales
1.2.3Stopping Times
1.2.4 Local Martingales
1.3Continuous Semi_martingales
1.3.1 Brackets of Continuous Local Martingales
1.3.2 Brackets of Continuous Semi-martingales
1.4Brownian Motion
1.4.1 One-dimensional Brownian Motion
1.4.2d-dimensional Brownian Motion
1.4.3Correlated Brownian Motions
1.5Stochastic Calculus
1.5.1 Stochastic Integration
1.5.2 Integration by Parts
1.5.3 Itos Formula: The Fundamental Formula of Stochastic
1.5.4Stochastic Differential Equations
1.5.5Stochastic Differential Equations: The One dimensional Case
1.5.6 Partial Differential Equations
1.5.7 Doleans-Dade Exponential
1.6 Predictable Representation Property
1.6.1 Brownian Motion Case
1.6.2Towards a General Definition of the Predictable Representation Property
1.6.3 Dudleys Theorem
1.6.4Backward Stochastic DifferentialEquations
1.7 Change of Probability and Girsanovs Theorem
1.7.1 Change of Probability
1.7.2Decomposition of P-Martingales as Q-serm-martingales
1.7.3Girsanovs Theorem: The One-dimensional Brownian Motion Case
1.7.4 Multidimensional Case
1.7.5 Absolute Continuity
1.7.6Condition for Martingale Property of Exponential
1.7.7Predictable Representation Property under a Change
1.7.8 An Example of Invariance of BM under Change of
2 Basic Concepts and Examples in Finance
2.1A Semi-martingale Framework
2.1.1 The Financial Market
2.1.2 Arbitrage Opportunities
2.1.3Equtvalent Martingale Measure
2.1.4 Admissible Strategies
2.1.5Complete Market
2.2 A Diffusion Model
2.2.1 Absence of Arbitrage
2.2.2 Completeness of the Market
2.2.3 PDE Evaluation of Contingent Claims in a Complete
2.3.1The Model
2.3.2European Call and Put Options
2.3.3 The Greeks
2.3.4 General Case
2.3.5Dividend Paying Assets
2.3.6Role of Information
2.4 Change of Numeraire
2.4.1 Change of Numeraire and Black-Scholes Formula
2.4.2 Self-financing Strategy and Change of Numeraire
2.4.3 Change of Numeraire and Change of Probability
2.4.5Self-financing Strategies: Constrained Strategies
2.5 Feynman-Kac
2.5.1 Feynman-Kac Formula
2.5.2Occupation Time for a Brownian Motion
2.5.3Occupation Time for a Drifted Brownian Motion
2.5.4 Cumulative Options
2.6Ornstein-Uhlenbeck Processes and Related Processes
2.6.1 Definition and Properties
2.6.2 Zero-coupon Bond
2.6.3Absolute Continuity Relationship for Generalized
2.6.4Square of a Generalized Vasicek Process
2.6.5 Powers of δ-Dimensional Radial OU Processes, Alias CIR Processes
2.7 Valuation of European Options
2.7.1The Garman and Kohlhagen Model for Currency
2.7.2Evaluation of an Exchange Option
2.7.3 Quanto Options
3Hitting Times: A Mix of Mathematics and Finance
3.1 Hitting Times and the Law of the Maximum for Brownian Motion
3.1.1 The Law of the Pair of R,andom Variables (Wt,Mt)
3.1.2 Hitting Times Process
3.1.3 Law of the Maximum of a Brownian Motion over (O,t)
3.1.4Laws ofHitting Times
3.1.6 Laplace Transforms of Hitting Times
3.2 Hitting Times for a Drifted Brownian Motion
3.2.1Joint Laws of (Mx,X) and (mx,X) at Time t
3.2.2 Laws of Maximum, Minimum, and Hitting Times
3.2.3Laplace Transforms
3.2.4Computation of W(v)(Ⅱ{Tu(X)
3.2.5Normal Inverse Gaussian Law
3.3Hitting Times for Geometric Brownian Motion
3.3.1 Laws of the Pairs (Mts,St) and (,mis,St)
3.3.2Laplace Transforms
3.3.3 Computationof E(e -XTa(S)11 {Ta(S)
3.4Hitting Times in Other Cases
3.4.10rnstein-Uhlenbeck Processes
3.4.2Deterministic Volatility and Nonconstant Barrier
3.5Hitting Time of a Two-sided Barrier for BM and GBM
3.5.1Brownian Case
3.5.2Drifted Brownian Motion
3.6Barrier ODtions
3.6.1 Put-Call Symmetry
3.6.2Binary Options and △s
3.6.3Barrier Options: General Characteristics
3.6.4 Valuation and Hedging of a Regular Down-and-In Call Option When the Underlying is a Martingale
3.6.5Mathematical Results Deduced from the Previous Approach
3.6.6Valuation and Hedging of Regular Down-and-In Call Options: The General Case
3.6.7 Valuation and Hedging of Reverse Barrier Options
3.6.8The Emerging Calls Method
3.6.9Closed Form Expressions
3.7Lookback Options
3.7.1Using Binary Options
3.7.2 Traditional Approach
3.8Double-barrier Options
3.9Other ODtions
3.9.1 Options Involving a Hitting Time
3.9.2Boost Options
3.9.3 Exponential Down Barrier Option
3.10 A Structural Approach to Default Risk
3.10.1 Mertons Model
3.10.2 First Passage Time Models
3.11 American Options
3.11.1 American Stock Options
3.11.2 American Currency Options
3.11.3 Perpetual American Currency Options
3.12 Real Options
3.12.1 Optimal Entry with Stochastic Investment Costs
3.12.2 Optimal Entry in the Presence of Competition
3.12.3 Optimal Entry and Optimal Exit
3.12.4 Optimal Exit and Optimal Entry in the Presence of ompetition
3.12.5 Optimal Entry and Exit Decisions
……
4 Complements on Brownian Motion
5 Complements on Continuous Path Processes
6A Special Family of Diffusions: Bessel Processes
Part Ⅱ Jump Processes
References
Index of Authors
Index of Symbols
Subject Index

您曾經瀏覽過的商品

購物須知

大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。

特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。

無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:87 517
缺貨無法訂購