Light Driven Micromachines
商品資訊
ISBN13:9781498757690
出版社:CRC Pr I Llc
作者:George K. Knopf and Kenji Uchino
出版日:2018/04/26
裝訂/頁數:精裝/307頁
規格:2.5cm (厚)
版次:1
商品簡介
Light Driven Micromachines addresses the fundamental characteristics of light activated and optically powered microstructures, simple mechanisms, and complex machines that perform mechanical work at the micro- and nano-scale. It provides a background for how light can initiate physical movement by inducing material or bending or inducing microforces on the surrounding medium. Then, it covers how the forces of light can be harnessed for trapping and manipulating micron-sized mechanical components. Smart materials that exhibit direct optical-to-mechanical energy conversion are examined from the perspective of designing photo-responsive actuators and optically driven systems.
作者簡介
George K. Knopf is a Professor in the Department of Mechanical & Materials Engineering at the University of Western Ontario (Canada). His areas of expertise and research interests include intelligent systems for design, laser microfabrication, micro-optics, optical microactuators, biosensors and bioelectronic imaging arrays. Past contributions have been to the development of intelligent systems for engineering design including studies on the characterization of micro geometry flaws in product data exchange, efficient packing of 3D parts for layered manufacturing, and the adaptive reconstruction of complex freeform surfaces. The innovative surface modeling algorithms have been applied to the reconstruction of complex bone geometry and fragmented archaeological artifacts. Other contributions include self-organizing feature maps that convert large numeric data sets into geometric forms for interactive data exploration and visualization. In recent years, the focus of research has significantly expanded in the areas of laser microfabrication, micro-optics and light driven technologies. These technologies include a unique approach to surface geometry measurement using an unconstrained range-sensor head [US patent 6,542,249], micro-optic element design for large area light guides and curtains, non-lithographic fabrication of metallic micro-mold masters by laser machining and welding, laser micro polishing and development of several bioelectronic devices that exploit the photoelectric signals generated by dried bacteriorhodopsin (bR) films. Biologically-based light activated transducers represent a new sensor technology that can be fabricated on flexible polymer substrates for creating novel imaging and biosensor systems [USA Patent No. 7,573,024]. Current research involves the development of electrically conductive graphene-based inks and novel fabrication processes for printing electronic circuitry on a variety of mechanically flexible surfaces (e.g. polymers, paper, and biocompatible silk). Laser microfabrication techniques are used for material removal and thermally reducing graphene-oxide (GO) films to produce conductive microcircuit features. The optical transparency characteristics of functionalized rGO circuits are also being investigated. In addition, he has co-edited two CRC Press volumes entitled Smart Biosensor Technology and Optical Nano and Micro Actuator Technology. Professor Knopf has acted as a technical reviewer for numerous academic journals, conferences, and granting agencies and has co-chaired several international conferences.
Kenji Uchino is a Professor in the Departments of Electrical Engineering and Materials Science & Engineering at The Pennsylvania State University (USA). He is also the founding director of International Center for Actuators and Transducers and a pioneer in the area of piezoelectric actuators. His research interest is in solid state physics, especially in ferroelectrics and piezoelectrics, including basic research on theory, materials, device designing and fabrication processes, as well as application development of solid state actuators/sensors for precision positioners, micro-robotics, ultrasonic motors, smart structures, piezoelectric transformers and energy harvesting. Professor Uchino’s research activities have resulted in a number of important discoveries and/or inventions including lead magnesium niobate (PMN)-based electrostricive materials, cofired multilayer piezoelectric
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。