穩健混合模型(簡體書)
商品資訊
系列名:江西財經大學東億學術論叢.第一輯
ISBN13:9787509661024
出版社:經濟管理出版社
作者:余純
出版日:2020/03/01
裝訂/頁數:平裝/155頁
規格:24cm*17cm (高/寬)
版次:一版
商品簡介
作者簡介
目次
相關商品
商品簡介
《穩健混合模型》提出了經由均值漂移懲罰的穩健混合模型方法(RMM)和穩健混合回歸模型方法(RM2),這兩種方法可以同時進行參數估計和離群值檢測。一個均值漂移參數γ,被引入到混合模型(混合回歸模型)中,並用非凸的懲罰函數對其加以懲罰。這些非凸的懲罰函數都有對應的鬧值法則用於對該均值漂移參數的估計。基於這樣的模型設定,我們提出了一種選代的間值嵌入式的EM算法對懲罰目標函數大化進行參數估計。通過和其他的穩健混合回歸模型方法進行比較,我們提出的RMM和RM2方法在離群值檢測和參數估計兩個方面都有更優的表現。
作者簡介
余純,統計學博士,現任江西財經大學統計學院副教授。研究方向為穩健線性回歸、穩健混合模型、變量與模型選擇以及精算科學等。主要講授“金融數學”“精算概率”“概率論”“線性模型方法”以及“數理統計前沿問題研究”等大學本科和研究生課程。
目次
Chapter 1 Robust Linear Regression: A Review and Comparison
1.1 Introduction
1.2 Robust Regression Methods
1.2.1 M-estimates
1.2.2 LMS estimates
1.2.3 LTS estimates
1.2.4 S-estimates
1.2.5 Generalized S-estimates (GS-estimates)
1.2.6 MM-estimates
1.2.7 Mallows GM-estimates
1.2.8 Schweppe GM-estimates
1.2.9 S1S GM-estimates
1.2.10 R-estimates
1.2.11 REWLSE
1.2.12 Robust regression based on regularization of case-specific parameters
1.3 Examples
1.4 Discussion
Chapter 2 A Selective Overview and Comparison of Robust Mixture Regression Estimators
2.1 Introduction
2.2 Robust mixture regression methods
2.2.1 Robust mixture regresion using the t-distribution
2.2.2 Robust mixture regression modeling using Pearson type VM distribution
2.2.3 Robust mixture regression model fitting by Laplace distribution
2.2.4 Robust mixture regression modeling based on Scale mixtures of skew-normal distributions
2.2.5 Robust mixture regression with random covariates via trimming and constraints
2.2.6 Robust clustering in regression analysis via the contaminated gaussian cluster weighted model
2.2.7 Trimmed likelihood estimator
2.2.8 Least trimmed squares estimator
2.2.9 Robust estimator based on a modified EM algorithm with bisquare loss
2.2.10 Robust EM-type algorithm for log-concave mixtures of regression models
2.3 Simulation studies
2.4 Discussion
Chapter 3 Outlier Detection and Robust Mixture Modeling Using Nonconvex Penalized Likelihood
3.1 Introduction
3.2 Robust Mixture Model via Mean-Shift Penalization
3.2.1 RMM for Equal Component Variances
3.2.2 RMM for Unequal Component Variances
3.2.3 Tuning Parameter Selection
3.3 Simulation
3.3.1 Methods and Evaluation Measures
3.3.2 Results
3.4 Real Data Application
3.5 Discussion
Chapter 4 Outlier Detection and Robust Mixture Regression Using Nonconvex Penalized Likelihood
4.1 Introduction
4.2 Robust Mixture Regression via Mean-shift Penalization
4.3 Simulation
4.3.1 Simulation Setups
4.3.2 Methods and Evaluation Measures
4.3.3 Results
4.4 Tone Perception Data Analysis
4.5 Discussion
Appendix
References
1.1 Introduction
1.2 Robust Regression Methods
1.2.1 M-estimates
1.2.2 LMS estimates
1.2.3 LTS estimates
1.2.4 S-estimates
1.2.5 Generalized S-estimates (GS-estimates)
1.2.6 MM-estimates
1.2.7 Mallows GM-estimates
1.2.8 Schweppe GM-estimates
1.2.9 S1S GM-estimates
1.2.10 R-estimates
1.2.11 REWLSE
1.2.12 Robust regression based on regularization of case-specific parameters
1.3 Examples
1.4 Discussion
Chapter 2 A Selective Overview and Comparison of Robust Mixture Regression Estimators
2.1 Introduction
2.2 Robust mixture regression methods
2.2.1 Robust mixture regresion using the t-distribution
2.2.2 Robust mixture regression modeling using Pearson type VM distribution
2.2.3 Robust mixture regression model fitting by Laplace distribution
2.2.4 Robust mixture regression modeling based on Scale mixtures of skew-normal distributions
2.2.5 Robust mixture regression with random covariates via trimming and constraints
2.2.6 Robust clustering in regression analysis via the contaminated gaussian cluster weighted model
2.2.7 Trimmed likelihood estimator
2.2.8 Least trimmed squares estimator
2.2.9 Robust estimator based on a modified EM algorithm with bisquare loss
2.2.10 Robust EM-type algorithm for log-concave mixtures of regression models
2.3 Simulation studies
2.4 Discussion
Chapter 3 Outlier Detection and Robust Mixture Modeling Using Nonconvex Penalized Likelihood
3.1 Introduction
3.2 Robust Mixture Model via Mean-Shift Penalization
3.2.1 RMM for Equal Component Variances
3.2.2 RMM for Unequal Component Variances
3.2.3 Tuning Parameter Selection
3.3 Simulation
3.3.1 Methods and Evaluation Measures
3.3.2 Results
3.4 Real Data Application
3.5 Discussion
Chapter 4 Outlier Detection and Robust Mixture Regression Using Nonconvex Penalized Likelihood
4.1 Introduction
4.2 Robust Mixture Regression via Mean-shift Penalization
4.3 Simulation
4.3.1 Simulation Setups
4.3.2 Methods and Evaluation Measures
4.3.3 Results
4.4 Tone Perception Data Analysis
4.5 Discussion
Appendix
References
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。
特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。
無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。