Online Stochastic Combinatorial Optimization
商品資訊
ISBN13:9780262220804
出版社:Mit Pr
作者:Russell Bent
出版日:2006/10/13
裝訂/頁數:精裝/248頁
商品簡介
相關商品
商品簡介
This title offers a framework for online decision making under uncertainty and time constraints, with online stochastic algorithms for implementing the framework, performance guarantees, and demonstrations of a variety of applications. Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce hight-quality decisions under severe time constraints.
Such online decision-making applications are becoming increasingly common: ambulance dispatching and emergency city-evacuation routing, for example, are inherently online decision-making problems; other applications include packet scheduling for Internet communications and reservation systems. This book presents a novel framework, online stochastic optimization, to address this challenge. This framework assumes that the distribution of future requests, or an approximation thereof, is available for sampling, as is the case in many applications that make either historical data or predictive models available.
It assumes additionally that the distribution of future requests is independent of current decisions, which is also the case in a variety of applications and holds significant computational advantages. The book presents several online stochastic algorithms implementing the framework, provides performance guarantees, and demonstrates a variety of applications. It discusses how to relax some of the assumptions in using historical sampling and machine learning and analyzes different underlying algorithmic problems.
And finally, the book discusses the framework's possible limitations and suggests directions for future research.
Such online decision-making applications are becoming increasingly common: ambulance dispatching and emergency city-evacuation routing, for example, are inherently online decision-making problems; other applications include packet scheduling for Internet communications and reservation systems. This book presents a novel framework, online stochastic optimization, to address this challenge. This framework assumes that the distribution of future requests, or an approximation thereof, is available for sampling, as is the case in many applications that make either historical data or predictive models available.
It assumes additionally that the distribution of future requests is independent of current decisions, which is also the case in a variety of applications and holds significant computational advantages. The book presents several online stochastic algorithms implementing the framework, provides performance guarantees, and demonstrates a variety of applications. It discusses how to relax some of the assumptions in using historical sampling and machine learning and analyzes different underlying algorithmic problems.
And finally, the book discusses the framework's possible limitations and suggests directions for future research.
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。