Digital Forensics and Watermarking: 20th International Workshop, IWDW 2021, Beijing, China, November 20-22, 2021, Revised Selected Papers
商品資訊
ISBN13:9783030953973
出版社:Springer Nature
作者:Xianfeng Zhao(EDI)
出版日:2022/02/21
裝訂:平裝
規格:23.4cm*15.6cm*1.5cm (高/寬/厚)
商品簡介
Forensics and Security Analysis.- A Multi-Level Feature Enhancement Network for Image Splicing Localization.- MSA-CNN: Face Morphing Detection via a Multiple Scales Attention Convolutional Neural Network.- Double-Stream Segmentation Network with Temporal Self-Attention for Deepfake Video Detection.- Exposing Deepfake Videos with Spatial, Frequency and Multi-Scale Temporal Artifacts.- On the Security of Encrypted JPEG Image with Adaptive Key Generated by Invariant Characteristic.- Modify the Quantization Table in the JPEG Header File for Forensics and Anti-Forensics.- More Accurate and Robust PRNU-Based Source Camera Identification with 3-Step 3-Class Approach.- Effects of Image Compression on Image Age Approximation.- FMFCC-A: A Challenging Mandarin Dataset for Synthetic Speech Detection.- Watermarking.- A Feature-Map-Based Large-Payload DNN Watermarking Algorithm.- A Robust DCT-Based Video Watermarking Scheme Against Recompression and Synchronization Attacks.- Improved Fluctuation Derived Block Selection Strategy in Pixel Value Ordering Based Reversible Data Hiding.- MasterFace Watermarking for IPR Protection of Siamese Network for Face Verification.- Steganology.- Arbitrary-Sized JPEG Steganalysis Based on Fully Convolutional Network.- Using Contrastive Learning to Improve the Performance of Steganalysis Schemes.- A HEVC Steganalysis Algorithm Based on Relationship of Adjacent Intra Prediction Modes.- Data Hiding Based on Redundant Space of WeChat Mini Program Codes.- Image Block Regression Based on Feature Fusion for CNN-Based Spatial Steganalysis.
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。