From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed comp