This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincaré's development of topology, and for many subsequent theories, so th
In the 2012–13 academic year, the Mathematical Sciences Research Institute, Berkeley, hosted programs in Commutative Algebra (Fall 2012 and Spring 2013) and Noncommutative Algebraic Geometry and Representation Theory (Spring 2013). There have been many significant developments in these fields in recent years; what is more, the boundary between them has become increasingly blurred. This was apparent during the MSRI program, where there were a number of joint seminars on subjects of common interest: birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, and tilting theory, to name a few. These volumes reflect the lively interaction between the subjects witnessed at MSRI. The Introductory Workshops and Connections for Women Workshops for the two programs included lecture series by experts in the field. The volumes include a number of survey articles based on these lectures, along with expository artic
This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincaré's development of topology, and for many subsequent theories, so th
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins
In the 2012–13 academic year, the Mathematical Sciences Research Institute, Berkeley, hosted programs in Commutative Algebra (Fall 2012 and Spring 2013) and Noncommutative Algebraic Geometry and Representation Theory (Spring 2013). There have been many significant developments in these fields in recent years; what is more, the boundary between them has become increasingly blurred. This was apparent during the MSRI program, where there were a number of joint seminars on subjects of common interest: birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, and tilting theory, to name a few. These volumes reflect the lively interaction between the subjects witnessed at MSRI. The Introductory Workshops and Connections for Women Workshops for the two programs included lecture series by experts in the field. The volumes include a number of survey articles based on these lectures, along with expository artic
The theory of schemes is the foundation for algebraic geometry proposed and elaborated by Alexander Grothendieck and his co-workers. It has allowed major progress in classical areas of algebraic geo
This book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such r
The selected contributions in this volume originated at the Sundance conference, which was devoted to discussions of current work in the area of free resolutions. The papers include new research, not
Algebraic Geometry often seems very abstract, but in fact it is full of concrete examples and problems. This side of the subject can be approached through the equations of a variety, and the syzygies
This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commuta