How do scientific conjectures become laws? Why does proof mean different things in different sciences? Do numbers exist, or were they invented? Why do some laws turn out to be wrong? In this wide-ra
Join Brian E. Davies on a historical walk from Flat Holm to Brecon and discover Wales's rich and diverse history, some of its more colourful characters and some of its best pubs.
This wide ranging but self-contained account of the spectral theory of non-self-adjoint linear operators is ideal for postgraduate students and researchers, and contains many illustrative examples and exercises. Fredholm theory, Hilbert-Schmidt and trace class operators are discussed, as are one-parameter semigroups and perturbations of their generators. Two chapters are devoted to using these tools to analyze Markov semigroups. The text also provides a thorough account of the new theory of pseudospectra, and presents the recent analysis by the author and Barry Simon of the form of the pseudospectra at the boundary of the numerical range. This was a key ingredient in the determination of properties of the zeros of certain orthogonal polynomials on the unit circle. Finally, two methods, both very recent, for obtaining bounds on the eigenvalues of non-self-adjoint Schrodinger operators are described. The text concludes with a description of the surprising spectral properties of the non-s
This book is an introduction to the theory of partial differential operators. It assumes that the reader has a knowledge of introductory functional analysis, up to the spectral theorem for bounded linear operators on Banach spaces. However, it describes the theory of Fourier transforms and distributions as far as is needed to analyse the spectrum of any constant coefficient partial differential operator. A completely new proof of the spectral theorem for unbounded self-adjoint operators is followed by its application to a variety of second-order elliptic differential operators, from those with discrete spectrum to Schrödinger operators acting on L2(RN). The book contains a detailed account of the application of variational methods to estimate the eigenvalues of operators with measurable coefficients defined by the use of quadratic form techniques. This book could be used either for self-study or as a course text, and aims to lead the reader to the more advanced literature on the subjec
This volume brings together lectures from an instructional meeting on spectral theory and geometry held under the auspices of the International Centre for Mathematical Sciences in Edinburgh. The contributions here come from world experts and many are much expanded versions of the lectures they gave. Together they survey the core material and go beyond to reach deeper results. For graduate students and experts alike, this book will be a highly useful resource.
In the follow-up to his acclaimed Science in the Looking Glass, Brian Davies discusses deep problems about our place in the world, using a minimum of technical jargon. The book argues that 'absolutist
In the follow-up to his acclaimed Science in the Looking Glass, Brian Davies discusses deep problems about our place in the world, using a minimum of technical jargon. The book argues that `absolutist