From Measures to Itô Integrals gives a clear account of measure theory, leading via L2-theory to Brownian motion, Itô integrals and a brief look at martingale calculus. Modern probability theory and the applications of stochastic processes rely heavily on an understanding of basic measure theory. This text is ideal preparation for graduate-level courses in mathematical finance and perfect for any reader seeking a basic understanding of the mathematics underpinning the various applications of Itô calculus.
Students and instructors alike will benefit from this rigorous, unfussy text, which keeps a clear focus on the basic probabilistic concepts required for an understanding of financial market models, including independence and conditioning. Assuming only some calculus and linear algebra, the text develops key results of measure and integration, which are applied to probability spaces and random variables, culminating in central limit theory. Consequently it provides essential prerequisites to graduate-level study of modern finance and, more generally, to the study of stochastic processes. Results are proved carefully and the key concepts are motivated by concrete examples drawn from financial market models. Students can test their understanding through the large number of exercises and worked examples that are integral to the text.
Students and instructors alike will benefit from this rigorous, unfussy text, which keeps a clear focus on the basic probabilistic concepts required for an understanding of financial market models, including independence and conditioning. Assuming only some calculus and linear algebra, the text develops key results of measure and integration, which are applied to probability spaces and random variables, culminating in central limit theory. Consequently it provides essential prerequisites to graduate-level study of modern finance and, more generally, to the study of stochastic processes. Results are proved carefully and the key concepts are motivated by concrete examples drawn from financial market models. Students can test their understanding through the large number of exercises and worked examples that are integral to the text.
Measure, Integral and Probability is a gentle introduction that makes measure and integration theory accessible to the average third-year undergraduate student. The ideas are developed at an easy pace
"With its emphasis on examples, exercises and calculations, this book suits advanced undergraduates as well as postgraduates and practitioners. It provides a clear treatment of the scope and limitatio