The goal of learning theory is to approximate a function from sample values. To attain this goal learning theory draws on a variety of diverse subjects, specifically statistics, approximation theory, and algorithmics. Ideas from all these areas blended to form a subject whose many successful applications have triggered a rapid growth during the last two decades. This is the first book to give a general overview of the theoretical foundations of the subject emphasizing the approximation theory, while still giving a balanced overview. It is based on courses taught by the authors, and is reasonably self-contained so will appeal to a broad spectrum of researchers in learning theory and adjacent fields. It will also serve as an introduction for graduate students and others entering the field, who wish to see how the problems raised in learning theory relate to other disciplines.
The Foundations of Computational Mathematics meetings are a platform for cross-fertilisation between numerical analysis, mathematics and computer science. This volume is a collection of articles based on plenary presentations, given at the 2011 meeting, by some of the world's foremost authorities in computational mathematics. The topics covered reflect the breadth of research within the area as well as the richness of interactions between seemingly unrelated branches of pure and applied mathematics. As a result this volume will be of interest to researchers in the field of computational mathematics and also to non-experts who wish to gain some insight into the state of the art in this active and significant field.
Most works of art, whether illustrative, musical or literary, are created subject to a set of constraints. In many (but not all) cases, these constraints have a mathematical nature, for example, the g
Most works of art, whether illustrative, musical or literary, are created subject to a set of constraints. In many (but not all) cases, these constraints have a mathematical nature, for example, the geometric transformations governing the canons of J. S. Bach, the various projection systems used in classical painting, the catalog of symmetries found in Islamic art, or the rules concerning poetic structure. This fascinating book describes geometric frameworks underlying this constraint-based creation. The author provides both a development in geometry and a description of how these frameworks fit the creative process within several art practices. He furthermore discusses the perceptual effects derived from the presence of particular geometric characteristics. The book began life as a liberal arts course and it is certainly suitable as a textbook. However, anyone interested in the power and ubiquity of mathematics will enjoy this revealing insight into the relationship between mathematic
This volume is a collection of articles based on the plenary talks presented at the 2008 meeting in Hong Kong of the Society for the Foundations of Computational Mathematics. The talks were given by some of the foremost world authorities in computational mathematics. The topics covered reflect the breadth of research within the area as well as the richness and fertility of interactions between seemingly unrelated branches of pure and applied mathematics. As a result this volume will be of interest to researchers in the field of computational mathematics and also to non-experts who wish to gain some insight into the state of the art in this active and significant field.
This book deals with condition as a main aspect in the understanding of the performance—regarding both stability and complexity—of numerical algorithms. It offers partial solutions for Smale's 17th p