The subject of elliptic curves is one of the jewels of nineteenth-century mathematics, originated by Abel, Gauss, Jacobi, and Legendre. This 1997 book presents an introductory account of the subject in the style of the original discoverers, with references to and comments about more recent and modern developments. It combines three of the fundamental themes of mathematics: complex function theory, geometry, and arithmetic. After an informal preparatory chapter, the book follows an historical path, beginning with the work of Abel and Gauss on elliptic integrals and elliptic functions. This is followed by chapters on theta functions, modular groups and modular functions, the quintic, the imaginary quadratic field, and on elliptic curves. Requiring only a first acquaintance with complex function theory, this book is an ideal introduction to the subject for graduate students and researchers in mathematics and physics, with many exercises with hints scattered throughout the text.
The subject of elliptic curves is one of the jewels of nineteenth-century mathematics, originated by Abel, Gauss, Jacobi, and Legendre. This 1997 book presents an introductory account of the subject in the style of the original discoverers, with references to and comments about more recent and modern developments. It combines three of the fundamental themes of mathematics: complex function theory, geometry, and arithmetic. After an informal preparatory chapter, the book follows an historical path, beginning with the work of Abel and Gauss on elliptic integrals and elliptic functions. This is followed by chapters on theta functions, modular groups and modular functions, the quintic, the imaginary quadratic field, and on elliptic curves. Requiring only a first acquaintance with complex function theory, this book is an ideal introduction to the subject for graduate students and researchers in mathematics and physics, with many exercises with hints scattered throughout the text.
Probability theory has been extraordinarily successful at describing a variety of phenomena, from the behaviour of gases to the transmission of messages, and is, besides, a powerful tool with applications throughout mathematics. At its heart are a number of concepts familiar in one guise or another to many: Gauss' bell-shaped curve, the law of averages, and so on, concepts that crop up in so many settings they are in some sense universal. This universality is predicted by probability theory to a remarkable degree. This book explains that theory and investigates its ramifications. Assuming a good working knowledge of basic analysis, real and complex, the author maps out a route from basic probability, via random walks, Brownian motion, the law of large numbers and the central limit theorem, to aspects of ergodic theorems, equilibrium and nonequilibrium statistical mechanics, communication over a noisy channel, and random matrices. Numerous examples and exercises enrich the text.
Probability theory has been extraordinarily successful at describing a variety of phenomena, from the behaviour of gases to the transmission of messages, and is, besides, a powerful tool with applications throughout mathematics. At its heart are a number of concepts familiar in one guise or another to many: Gauss' bell-shaped curve, the law of averages, and so on, concepts that crop up in so many settings they are in some sense universal. This universality is predicted by probability theory to a remarkable degree. This book explains that theory and investigates its ramifications. Assuming a good working knowledge of basic analysis, real and complex, the author maps out a route from basic probability, via random walks, Brownian motion, the law of large numbers and the central limit theorem, to aspects of ergodic theorems, equilibrium and nonequilibrium statistical mechanics, communication over a noisy channel, and random matrices. Numerous examples and exercises enrich the text.
Im Jahre 1920 begann Springer-Verlag mit der Veroffentlichung von Buchern in der hoheren Mathematik. Damals wurde die Reihe Grundlehren der Mathematischen Wissenschaften - ursprunglich konzipiert als
The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraor