This 2007 book concerns the vibration and the stability of slender structural components. The loss of stability of structures is an important aspect of structural mechanics and is presented here in terms of dynamic behavior. A variety of structural components are analyzed with a view to predicting their response to various (primarily axial) loading conditions. A number of different techniques are presented, with experimental verification from the laboratory. Practical applications are widespread, ranging from cables to space structures. The book presents methods by which the combined effects of vibration and buckling on various structures can be assessed. Vibrations and buckling are usually treated separately, but in this book their influence on each other is examined together, with examples when a combined approach is necessary. The avoidance of instability is the primary goal of this material.
This 2007 book concerns the vibration and the stability of slender structural components. The loss of stability of structures is an important aspect of structural mechanics and is presented here in terms of dynamic behavior. A variety of structural components are analyzed with a view to predicting their response to various (primarily axial) loading conditions. A number of different techniques are presented, with experimental verification from the laboratory. Practical applications are widespread, ranging from cables to space structures. The book presents methods by which the combined effects of vibration and buckling on various structures can be assessed. Vibrations and buckling are usually treated separately, but in this book their influence on each other is examined together, with examples when a combined approach is necessary. The avoidance of instability is the primary goal of this material.
Nonlinear behavior can be found in such highly disparate areas as population biology and aircraft wing flutter. Largely because of this extensive reach, nonlinear dynamics and chaos have become very active fields of study and research. This book uses an extended case study - an experiment in mechanical vibration - to introduce and explore the subject of nonlinear behavior and chaos. Beginning with a review of basic principles, the text then describes a cart-on-a-track oscillator and shows what happens when it is gradually subjected to greater excitation, thereby encountering the full spectrum of nonlinear behavior, from simple free decay to chaos. Experimental mechanical vibration is the unifying theme as the narrative evolves from a local, linear, largely analytical foundation toward the rich and often unpredictable world of nonlinearity. Advanced undergraduate and graduate students, as well as practising engineers, will find this book a lively, accessible introduction to the complex