The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field.
Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory, suitable for a variety of one- or two-semester courses. The authors' clear and fluent exposition helps the reader to grasp quickly the most important ideas of the theory, and their use of concrete examples illustrates these ideas and puts the results into perspective. The book requires few prerequisites, with background material supplied in the appendix. The first four chapters cover elementary material suitable for undergraduate students – invariance, recurrence and ergodicity – as well as some of the main examples. The authors then gradually build up to more sophisticated topics, including correlations, equivalent systems, entropy, the variational principle and thermodynamical formalism. The 400 exercises increase in difficulty through the text and test the reader's understanding of the whole theory. Hints and solutions are provided at the end of the book.
What is Dynamics about? In broad terms, the goal of Dynamics is to describe the long term evolution of systems for which an "infinitesimal" evolution rule is known. Examples and applications arise fro
The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing planetary pro