This book provides an introduction to the rapidly expanding theory of stochastic integration and martingales. The treatment is close to that developed by the French school of probabilists, but is more elementary than other texts. The presentation is abstract, but largely self-contained and Dr Kopp makes fewer demands on the reader's background in probability theory than is usual. He gives a fairly full discussion of the measure theory and functional analysis needed for martingale theory, and describes the role of Brownian motion and the Poisson process as paradigm examples in the construction of abstract stochastic integrals. An appendix provides the reader with a glimpse of very recent developments in non-commutative integration theory which are of considerable importance in quantum mechanics. Thus equipped, the reader will have the necessary background to understand research in stochastic analysis. As a textbook, this account will be ideally suited to beginning graduate students in
Measure, Integral and Probability is a gentle introduction that makes measure and integration theory accessible to the average third-year undergraduate student. The ideas are developed at an easy pace
This book presents the mathematics that underpins pricing models for derivative securities, such as options, futures and swaps, in modern financial markets. The idealized continuous-time models built