A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Several classes of matrices are thoroughly developed including the classes of matrices of 0's and 1's with a specified number of 1's in each row and column (equivalently, bipartite graphs with a specified degree sequence), symmetric matrices in such classes (equivalently, graphs with a specified degree sequence), tournament matrices with a specified number of 1's in each row (equivalently, tournaments with a specified score sequence), nonnegative matrices with specified row and column sums, and doubly stochastic matrices. Most of this material is presented for the first time in book format and the chapter on doubly stochastic matrices provides the most complete development of the topic to
The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on.
This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use
This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use
Appropriate for one- or two-semester, junior- to senior-level combinatorics courses. This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles a
The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on.
Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, s
This volume aims to gather information from both those who work on linear algebra problems in which combinatorial or graph-theoretical analysis is a major component and those that work on combinatoria
This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five seri