The need to transmit and store massive amounts of data reliably and without error is a vital part of modern communications systems. Error-correcting codes play a fundamental role in minimising data corruption caused by defects such as noise, interference, crosstalk and packet loss. This book provides an accessible introduction to the basic elements of algebraic codes, and discusses their use in a variety of applications. The author describes a range of important coding techniques, including Reed-Solomon codes, BCH codes, trellis codes, and turbocodes. Throughout the book, mathematical theory is illustrated by reference to many practical examples. The book was first published in 2003 and is aimed at graduate students of electrical and computer engineering, and at practising engineers whose work involves communications or signal processing.
This book was first published in 2004. In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at gr
The need to transmit and store massive amounts of data reliably and without error is a vital part of modern communications systems. Error-correcting codes play a fundamental role in minimising data corruption caused by defects such as noise, interference, crosstalk and packet loss. This book provides an accessible introduction to the basic elements of algebraic codes, and discusses their use in a variety of applications. The author describes a range of important coding techniques, including Reed-Solomon codes, BCH codes, trellis codes, and turbocodes. Throughout the book, mathematical theory is illustrated by reference to many practical examples. The book was first published in 2003 and is aimed at graduate students of electrical and computer engineering, and at practising engineers whose work involves communications or signal processing.
This book was first published in 2004. In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at gr
Today's pervasive computing and communications networks have created an intense need for secure and reliable cryptographic systems. Bringing together a fascinating mixture of topics in engineering, mathematics, computer science, and informatics, this book presents the timeless mathematical theory underpinning cryptosystems both old and new. Major branches of classical and modern cryptography are discussed in detail, from basic block and stream cyphers through to systems based on elliptic and hyperelliptic curves, accompanied by concise summaries of the necessary mathematical background. Practical aspects such as implementation, authentication and protocol-sharing are also covered, as are the possible pitfalls surrounding various cryptographic methods. Written specifically with engineers in mind, and providing a solid grounding in the relevant algorithms, protocols and techniques, this insightful introduction to the foundations of modern cryptography is ideal for graduate students and r
The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommun
At the heart of any modern communication system is the modem, connecting the data source to the communication channel. This first course in the mathematical theory of modem design introduces the theory of digital modulation and coding that underpins the design of digital telecommunications systems. A detailed treatment of core subjects is provided, including baseband and passband modulation and demodulation, equalization, and sequence estimation. The modulation waveforms for communication channels and digital recording channels are treated in a common setting and with unified terminology. A variety of more advanced topics is also covered, such as trellis codes, turbo codes, the Viterbi algorithm, block codes, maximum likelihood and maximum posterior probability, iterative demodulation, and jamming. Numerous end-of-chapter exercises are also included to test the reader's understanding throughout. This insightful book is ideal for senior undergraduate students studying digital communicat
Efficient signal processing algorithms are important for embedded and power-limited applications since, by reducing the number of computations, power consumption can be reduced significantly. Similarly, efficient algorithms are also critical to very large scale applications such as video processing and four-dimensional medical imaging. This self-contained guide, the only one of its kind, enables engineers to find the optimum fast algorithm for a specific application. It presents a broad range of computationally-efficient algorithms, describes their structure and implementation, and compares their relative strengths for given problems. All the necessary background mathematics is included and theorems are rigorously proved, so all the information needed to learn and apply the techniques is provided in one convenient guide. With this practical reference, researchers and practitioners in electrical engineering, applied mathematics, and computer science can reduce power dissipation for low-
The primary purpose of this monograph is to explore the ties between digital signal processing and error-control codes, with the thought of eventually making them two components of a unified theory, o
Information theory is an exceptional field in many ways. Technically, it is one of the rare fields in which mathematical results and insights have led directly to significant engineering payoffs.
Foreword by James L. Massey. Codes, Graphs, and Systems is an excellent reference for both academic researchers and professional engineers working in the fields of communications and signal processing