The techniques described here are based on a classroom project conducted between 2006 and 2009; the book includes many real-life classroom dialogues and discussions between teachers and students from
The first of a two volume set showcasing current research in model theory and its connections with number theory, algebraic geometry, real analytic geometry and differential algebra. Each volume contains a series of expository essays and research papers around the subject matter of a Newton Institute Semester on Model Theory and Applications to Algebra and Analysis. The articles convey outstanding new research on topics such as model theory and conjectures around Mordell-Lang; arithmetic of differential equations, and Galois theory of difference equations; model theory and complex analytic geometry; o-minimality; model theory and noncommutative geometry; definable groups of finite dimension; Hilbert's tenth problem; and Hrushovski constructions. With contributions from so many leaders in the field, this book will undoubtedly appeal to all mathematicians with an interest in model theory and its applications, from graduate students to senior researchers and from beginners to experts.
The second of a two volume set showcasing current research in model theory and its connections with number theory, algebraic geometry, real analytic geometry and differential algebra. Each volume contains a series of expository essays and research papers around the subject matter of a Newton Institute Semester on Model Theory and Applications to Algebra and Analysis. The articles convey outstanding new research on topics such as model theory and conjectures around Mordell-Lang; arithmetic of differential equations, and Galois theory of difference equations; model theory and complex analytic geometry; o-minimality; model theory and non-commutative geometry; definable groups of finite dimension; Hilbert's tenth problem; and Hrushovski constructions. With contributions from so many leaders in the field, this book will undoubtedly appeal to all mathematicians with an interest in model theory and its applications, from graduate students to senior researchers and from beginners to experts.
This book provides an introduction to recent developments in the theory of blow up algebras - Rees algebras, associated graded rings, Hilbert functions, and birational morphisms. The emphasis is on deriving properties of rings from their specifications in terms of generators and relations. While this limits the generality of many results, it opens the way for the application of computational methods. A highlight of the book is the chapter on advanced computational methods in algebra using Gröbner basis theory and advanced commutative algebra. The author presents the Gröbner basis algorithm and shows how it can be used to resolve computational questions in algebra. This volume is intended for advanced students in commutative algebra, algebraic geometry and computational algebra, and homological algebra. It can be used as a reference for the theory of Rees algebras and related topics.
Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic.
Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic.
Facilitate students’ transition from arithmetic to algebra! Includes step-by-step instructions with examples, practice problems using the concepts, real-life applications, a list
Facilitate students’ transition from arithmetic to algebra! Includes step-by-step instructions with examples, practice problems using the concepts, real-life applications, a list
The book gives a thorough introduction to the mathematical underpinnings of computer algebra. The subjects treated range from arithmetic of integers and polynomials to fast factorization methods, Grob
Bringing Out the Algebraic Character of Arithmetic contributes to a growing body of research relevant to efforts to make algebra an integral part of early mathematics instruction, an area of studies t
Dr Maxwell has written this short book to introduce students (and teachers) to the ideas involved in abstract mathematics. In his preface he states, 'I have often felt that the present plunge into abstraction is too sudden and that there is a need for more elementary work to make the immersion less exhausting.' Dr Maxwell does this by taking various topics from elementary mathematics, and showing what happens when the rules are altered in quite simple ways. He first discusses digital arithmetic, then introduces the idea of a group and illustrates some properties of groups by examples from algebra and geometry.
From 700 BCE to CE 1300, thousands of scholars from many different civilizations introduced mathematical ideas that established the foundations of arithmetic, number theory, algebra, geometry, and tr
How Humans Learn to Think Mathematically describes the development of mathematical thinking from the young child to the sophisticated adult. Professor David Tall reveals the reasons why mathematical concepts that make sense in one context may become problematic in another. For example, a child's experience of whole number arithmetic successively affects subsequent understanding of fractions, negative numbers, algebra, and the introduction of definitions and proof. Tall's explanations for these developments are accessible to a general audience while encouraging specialists to relate their areas of expertise to the full range of mathematical thinking. The book offers a comprehensive framework for understanding mathematical growth, from practical beginnings through theoretical developments, to the continuing evolution of mathematical thinking at the highest level.
How Humans Learn to Think Mathematically describes the development of mathematical thinking from the young child to the sophisticated adult. Professor David Tall reveals the reasons why mathematical concepts that make sense in one context may become problematic in another. For example, a child's experience of whole number arithmetic successively affects subsequent understanding of fractions, negative numbers, algebra, and the introduction of definitions and proof. Tall's explanations for these developments are accessible to a general audience while encouraging specialists to relate their areas of expertise to the full range of mathematical thinking. The book offers a comprehensive framework for understanding mathematical growth, from practical beginnings through theoretical developments, to the continuing evolution of mathematical thinking at the highest level.
Volume 2 of a 2-volume history — from Egyptian papyri and medieval maps to modern graphs and diagrams. Evolution of arithmetic, geometry, trigonometry, calculating devices, algebra, calculus, m
Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations and non-Euclidean geometries. Also describes how math is used