Quantum theory confronts us with bizarre paradoxes which contradict the logic of classical physics. This book takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, He
Intense external fields destabilize vacuum by introducing the creation of particle pairs. In this book the formalism of quantum electrodynamics (QED), using a special perturbation theory with matrix p
This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study applications and consequences of the formalism to the study of series expansions, measure, phase transitions, physics on spaces with nontrivial topologies, stochastic quantisation, fermions, QED, non-abelian gauge theories, symmetry breaking, the effective potential, finite temperature field theory, instantons and compositeness. Serious attention is paid to the shortcomings of the conventional formalism (e.g. problems of measure) as well as detailed appraisal of the ambiguities of series summation. This book will be of great use to graduate students in theoretical physics wishing to learn the use of functional integrals in quantum field theory. It will also be a useful reference for researc
Describing the physical properties of quantum materials near critical points with long-range many-body quantum entanglement, this book introduces readers to the basic theory of quantum phases, their phase transitions and their observable properties. This second edition begins with a new section suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. It also contains several new chapters to cover important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at non-zero temperatures. Finally, a variety of more complex models are explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.
Lookwood (Oxford U.) takes the informed general reader through relativity theory and quantum physics on the large scale as well as the very small, reviewing theories of Newton, Boltzmann, Einstein, Pe
Quantum physics allows entirely new forms of computation and cryptography, which could perform tasks currently impossible on classical devices, leading to an explosion of new algorithms, communications protocols and suggestions for physical implementations of all these ideas. As a result, quantum information has made the transition from an exotic research topic to part of mainstream undergraduate courses in physics. Based on years of teaching experience, this textbook builds from simple fundamental concepts to cover the essentials of the field. Aimed at physics undergraduate students with a basic background in quantum mechanics, it guides readers through theory and experiment, introducing all the central concepts without getting caught up in details. Worked examples and exercises make this useful as a self-study text for those who want a brief introduction before starting on more advanced books. Solutions are available online at www.cambridge.org/9781107014466.
This 2006 textbook provides a concise introduction to the key concepts and tools of statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theory, the authors present important numerical methods with applications to magnetic systems, Lennard-Jones fluids and biophysics. Quantum statistical mechanics is discussed in detail and applied to Bose-Einstein condensation and topics in astrophysics and cosmology. In order to describe emergent phenomena in interacting quantum systems, canonical non-relativistic quantum field theory is introduced and then reformulated in terms of Feynman integrals. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced undergraduate and graduate students in physics, chemistry and mathematics.
This 2006 textbook provides a concise introduction to the key concepts and tools of statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theory, the authors present important numerical methods with applications to magnetic systems, Lennard-Jones fluids and biophysics. Quantum statistical mechanics is discussed in detail and applied to Bose-Einstein condensation and topics in astrophysics and cosmology. In order to describe emergent phenomena in interacting quantum systems, canonical non-relativistic quantum field theory is introduced and then reformulated in terms of Feynman integrals. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced undergraduate and graduate students in physics, chemistry and mathematics.
Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modeling probabilistic-dynamic systems using two aspects of quantum theory. The first, 'contextuality', is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, 'quantum entanglement', allows cognitive phenomena to be modeled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light. Introducing the basic principles in an easy-to-follow way, this book does not assume a physics background or a quantum brain and comes complete with a tutorial and fully worked-out applications in important areas of cognition
Technological advances have made it possible to perform experiments, once considered to be purely gedanken, which test the counterintuitive and bizarre consequences of quantum theory. This book provides simple accounts of these experiments and an understanding of what they aim to prove and why this is important. After introducing the main theoretical concepts and problems with the foundations of quantum mechanics, early chapters discuss experiments in the areas of wave-particle duality, cavity quantum electrodynamics and quantum non-demolition measurement. The text then examines investigation of certain predictions including the Aharanov-Bohm effect, before tackling the problem of macroscopic quantum coherence. Later chapters consider methods of testing the quantum Zeno paradox, collapse, macroscopic quantum jumps, tunnelling times and Einstein-Bell non-locality. Introductions to the theory behind types of measuring devices such as micromasers and those based on the concept of quantum
The control of open quantum systems and their associated quantum thermodynamic properties is a topic of growing importance in modern quantum physics and quantum chemistry research. This unique and self-contained book presents a unifying perspective of such open quantum systems, first describing the fundamental theory behind these formidably complex systems, before introducing the models and techniques that are employed to control their quantum thermodynamics processes. A detailed discussion of real quantum devices is also covered, including quantum heat engines and quantum refrigerators. The theory of open quantum systems is developed pedagogically, from first principles, and the book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.
Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modeling probabilistic-dynamic systems using two aspects of quantum theory. The first, 'contextuality', is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, 'quantum entanglement', allows cognitive phenomena to be modeled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light. Introducing the basic principles in an easy-to-follow way, this book does not assume a physics background or a quantum brain and comes complete with a tutorial and fully worked-out applications in important areas of cognition
This book presents a distinctive way of understanding quantum correlations beyond entanglement, introducing readers to this less explored yet very fundamental aspect of quantum theory. It takes into a
This book discusses the physical phases of quantum chromodynamics (QCD) in ordinary environments, as well as in extreme environments of high temperatures and high baryon number. Under such extreme conditions, new phases are thought to exist: the quark-gluon plasma and colour superconductivity. After introducing lattice-gauge theory, beginning with fundamentals and reaching important developments, this book emphasises the application of QCD to the study of matter in extreme environments through a host of methods, including lattice-gauge theory, lower dimensional model field theories and effective Lagrangians. Suitable for graduate students and researchers entering the field of lattice-gauge theory, heavy ion collisions, nuclear theory or high energy phenomenology, as well as astrophysicists interested in the phases of nuclear matter and its impact on ideas of the interiors of dense stars. It is suitable for use as a textbook on lattice-gauge theory, effective Lagrangians and field theor
This book discusses the physical phases of quantum chromodynamics (QCD) in ordinary environments, as well as in extreme environments of high temperatures and high baryon number. Under such extreme conditions, new phases are thought to exist: the quark-gluon plasma and colour superconductivity. After introducing lattice-gauge theory, beginning with fundamentals and reaching important developments, this book emphasises the application of QCD to the study of matter in extreme environments through a host of methods, including lattice-gauge theory, lower dimensional model field theories and effective Lagrangians. Suitable for graduate students and researchers entering the field of lattice-gauge theory, heavy ion collisions, nuclear theory or high energy phenomenology, as well as astrophysicists interested in the phases of nuclear matter and its impact on ideas of the interiors of dense stars. It is suitable for use as a textbook on lattice-gauge theory, effective Lagrangians and field theor
Molecular Rydberg states have many unusual properties, lending themselves to a diverse range of experimental applications. This book is designed to unravel the mysteries of molecular Rydberg states that lie beyond the scope of accepted spectroscopic theories. It is the first single-authored text to focus on the application of multi-channel quantum defect theory (MQDT) and ab initio theory to this special class of molecular systems, introducing readers to novel theoretical techniques. The scattering techniques of MQDT are examined, along with a unified description of bound states and fragmentation dynamics. Connections with established spectroscopic theory are also described. The book concludes with an account of the spherical tensor and density matrix theories required for the interpretation of multi-photon experiments. While the main text focuses on physical principles and experimental applications, appendices are used to handle advanced mathematical detail. This is a valuable resourc