TOP
0
0
古典詩詞的女兒-葉嘉瑩

縮小範圍


商品類型

原文書 (1)
簡體書 (1)
商品狀況

可訂購商品 (2)
庫存狀況

無庫存 (2)
商品定價

$400~$599 (1)
$800以上 (1)
出版日期

2018~2019 (1)
2016年以前 (1)
裝訂方式

平裝 (1)
精裝 (1)
作者

(美)迪帕克‧K.阿加瓦爾、陳必衷 (1)
Deepak K. Agarwal (1)
出版社/品牌

Cambridge Univ Pr (1)
機械工業出版社 (1)

三民網路書店 / 搜尋結果

2筆商品,1/1頁
統計推薦系統(簡體書)
滿額折
作者:(美)迪帕克‧K.阿加瓦爾; 陳必衷  出版社:機械工業出版社  出版日:2019/09/23 裝訂:平裝
《統計推薦系統》由LinkedIn公司的技術專家撰寫,著眼於推薦系統的核心—統計方法,不僅講解理論知識,而且分享了作者在LinkedIn和Yahoo!的實踐經驗。 《統計推薦系統》分為三部分:第一部分介紹推薦系統的組成、經典推薦方法及評估方法,並引出了探索與利用問題;第二部分圍繞點擊通過率(CTR)預估這一重要問題,重點介紹快速線上雙線性因數模型和面向回歸的隱因數模型,為熱門推薦和個性化推薦
海外經銷商無庫存,到貨日平均30天至45天
定價:534 元, 優惠價:87 465
Statistical Methods for Recommender Systems
滿額折
作者:Deepak K. Agarwal  出版社:Cambridge Univ Pr  出版日:2015/12/31 裝訂:精裝
Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples
無庫存,下單後進貨(到貨天數約45-60天)
定價:2794 元, 優惠價:9 2515

暢銷榜

客服中心

收藏

會員專區