This volume is a collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. The articles represent new directi
This book introduces some advanced topics in probability theories - both pure and applied. It is divided into two parts: the first part deals with the analysis of stochastic dynamical systems, in term
Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent
Thanks to the driving forces of the Itô calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial differential equations, physics, and mathematical finance. This book is a compact, graduate-level text that develops the two calculi in tandem, laying out a balanced toolbox for researchers and students in mathematics and mathematical finance. The book explores foundations and applications of the two calculi, including stochastic integrals and differential equations, and the distribution theory on Wiener space developed by the Japanese school of probability. Uniquely, the book then delves into the possibilities that arise by using the two flavors of calculus together. Taking a distinctive, path-space-oriented approach, this book crystallizes modern day stochastic analysis into a single volume.
Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time in book form. The authors start with a detailed analysis of Lévy processes in infinite dimensions and their reproducing kernel Hilbert spaces; cylindrical Lévy processes are constructed in terms of Poisson random measures; stochastic integrals are introduced. Stochastic parabolic and hyperbolic equations on domains of arbitrary dimensions are studied, and applications to statistical and fluid mechanics and to finance are also investigated. Ideal for researchers and graduate students in stochastic processes and partial differential equations, this self-contained text will also interest those working on stochastic modeling in finance, statistical physics and environmental science.
Complexity science is the study of systems with many interdependent components. Such systems - and the self-organization and emergent phenomena they manifest - lie at the heart of many challenges of global importance. This book is a coherent introduction to the mathematical methods used to understand complexity, with plenty of examples and real-world applications. It starts with the crucial concepts of self-organization and emergence, then tackles complexity in dynamical systems using differential equations and chaos theory. Several classes of models of interacting particle systems are studied with techniques from stochastic analysis, followed by a treatment of the statistical mechanics of complex systems. Further topics include numerical analysis of PDEs, and applications of stochastic methods in economics and finance. The book concludes with introductions to space-time phases and selfish routing. The exposition is suitable for researchers, practitioners and students in complexity sci
Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Lévy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.