Matrices and kernels with positivity structures, and the question of entrywise functions preserving them, have been studied throughout the 20th century, attracting recent interest in connection to high-dimensional covariance estimation. This is the first book to systematically develop the theoretical foundations of the entrywise calculus, focusing on entrywise operations - or transforms - of matrices and kernels with additional structure, which preserve positive semidefiniteness. Designed as an introduction for students, it presents an in-depth and comprehensive view of the subject, from early results to recent progress. Topics include: structural results about, and classifying the preservers of positive semidefiniteness and other Loewner properties (monotonicity, convexity, super-additivity); historical connections to metric geometry; classical connections to moment problems; and recent connections to combinatorics and Schur polynomials. Based on the author's course, the book is struc
若需訂購本書,請電洽客服
02-25006600[分機130、131]。