The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for ana
This book is a rigorous introduction to the abstract theory of partial differential equations. The main prerequisite is familiarity with basic functional analysis: more advanced topics such as Fredholm operators, the Schauder fixed point theorem and Bochner integrals are introduced when needed, and the book begins by introducing the necessary material from the theory of distributions and Sobolev spaces. Using such techniques, the author presents different methods available for solving elliptic, parabolic and hyperbolic equations. He also considers the difference process for the practical solution of a partial differential equation, emphasising that it is possible to solve them numerically by simple methods. Many examples and exercises are provided throughout, and care is taken to explain difficult points. Advanced undergraduates and graduate students will appreciate this self-contained and practical introduction.
In this monograph, the authors present some powerful methods for dealing with singularities in elliptic and parabolic partial differential inequalities. Here, the authors take the unique approach of investigating differential inequalities rather than equations, the reason being that the simplest way to study an equation is often to study a corresponding inequality; for example, using sub and superharmonic functions to study harmonic functions. Another unusual feature of the present book is that it is based on integral representation formulae and nonlinear potentials, which have not been widely investigated so far. This approach can also be used to tackle higher order differential equations. The book will appeal to graduate students interested in analysis, researchers in pure and applied mathematics, and engineers who work with partial differential equations. Readers will require only a basic knowledge of functional analysis, measure theory and Sobolev spaces.