First published in 1968, An Introduction to Harmonic Analysis has firmly established itself as a classic text and a favorite for students and experts alike. Professor Katznelson starts the book with an exposition of classical Fourier series. The aim is to demonstrate the central ideas of harmonic analysis in a concrete setting, and to provide a stock of examples to foster a clear understanding of the theory. Once these ideas are established, the author goes on to show that the scope of harmonic analysis extends far beyond the setting of the circle group, and he opens the door to other contexts by considering Fourier transforms on the real line as well as a brief look at Fourier analysis on locally compact abelian groups. This new edition has been revised by the author, to include several new sections and a new appendix.
This classic in stochastic network modelling broke new ground when it was published in 1979, and it remains a superb introduction to reversibility and its applications. The book concerns behaviour in equilibrium of vector stochastic processes or stochastic networks. When a stochastic network is reversible its analysis is greatly simplified, and the first chapter is devoted to a discussion of the concept of reversibility. The rest of the book focuses on the various applications of reversibility and the extent to which the assumption of reversibility can be relaxed without destroying the associated tractability. Now back in print for a new generation, this book makes enjoyable reading for anyone interested in stochastic processes thanks to the author's clear and easy-to-read style. Elementary probability is the only prerequisite and exercises are interspersed throughout.
This celebrated book has been prepared with readers' needs in mind, remaining a systematic treatment of the subject whilst retaining its vitality. The second volume follows on from the first, concentrating on stochastic integrals, stochastic differential equations, excursion theory and the general theory of processes. Much effort has gone into making these subjects as accessible as possible by providing many concrete examples that illustrate techniques of calculation, and by treating all topics from the ground up, starting from simple cases. Many of the examples and proofs are new; some important calculational techniques appeared for the first time in this book. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.
This work provides a lucid and rigorous account of the foundations of algebraic geometry. The authors have confined themselves to fundamental concepts and geometrical methods, and do not give detailed developments of geometrical properties but geometrical meaning has been emphasised throughout. Here in this volume, the authors have again confined their attention to varieties defined on a ground field without characteristic. In order to familiarize the reader with the different techniques available to algebraic geometers, they have not confined themselves to one method and on occasion have deliberately used more advanced methods where elementary ones would serve, when by so doing it has been possible to illustrate the power of the more advanced techniques, such as valuation theory. The other two volumes of Hodge and Pedoe's classic work are also available. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.
This work provides a lucid and rigorous account of the foundations of modern algebraic geometry. The authors have confined themselves to fundamental concepts and geometrical methods, and do not give detailed developments of geometrical properties, but geometrical meaning has been emphasised throughout. This first volume is divided into two parts. The first is devoted to pure algebra; the basic notions, the theory of matrices over a non-commutative ground field and a study of algebraic equations. The second part is concerned with the definitions and basic properties of projective space in n dimensions. It concludes with a purely algebraic account of collineations and correlations. The other two volumes of Hodge and Pedoe's classic work are also available. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.
This work provides a lucid and rigorous account of the foundations of modern algebraic geometry. The authors have confined themselves to fundamental concepts and geometrical methods, and do not give detailed developments of geometrical properties but geometrical meaning has been emphasised throughout. Volume 2 gives an account of the principal methods used in developing a theory of algebraic varieties in spaces of n dimensions. Applications of these methods are also given to some of the more important varieties which occur in projective geometry. The ground field is without characteristic. Since geometry over any field without characteristic conforms to the general pattern of geometry over the field of complex numbers, a sound algebraic basis for classical geometry is provided. The other two volumes of Hodge and Pedoe's classic work are also available. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.
The late Professor G. N. Watson wrote his monumental 1995 treatise on the theory of Bessel functions with two objects in view. The first was the development of applications of the fundamental processes of the theory of complex variables; and the second was the compilation of a collection of results of value to mathematicians and physicists, who encounter Bessel functions in the course of their researches. The completeness of his theoretical account, combined with the wide scope of the practical examples and the extensive numerical tables, have resulted in a book which is indispensable to pure and applied mathematicians, as well as to physicists.
Classical algebraic geometry, inseparably connected with the names of Abel, Riemann, Weierstrass, Poincaré, Clebsch, Jacobi and other outstanding mathematicians of the last century, was mainly an analytical theory. In our century it has been enriched by the methods and ideas of topology, commutative algebra and Grothendieck's schemes seemed to have replaced once and forever the somewhat naive language of classical algebraic geometry. This book contains more than its modest title suggests. Written in 1897, its scope was as broad as it could possibly be, namely to cover the whole of algebraic geometry, and associated theories. The subject is discussed by Baker in terms of transcendental functions, and in particular theta functions. Many of the ideas put forward are of continuing relevance today, and some of the most exciting ideas from theoretical physics draw on work presented here.
Hydrodynamic stability is of fundamental importance in fluid mechanics and is concerned with the problem of transition from laminar to turbulent flow. Drazin and Reid emphasise throughout the ideas involved, the physical mechanisms, the methods used, and the results obtained, and, wherever possible, relate the theory to both experimental and numerical results. A distinctive feature of the book is the large number of problems it contains. These problems not only provide exercises for students but also provide many additional results in a concise form. This new edition of this celebrated introduction differs principally by the inclusion of detailed solutions for those exercises, and by the addition of a Foreword by Professor J. W. Miles.
Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.
Designed for the non-specialist, this classic text by a world expert is an invaluable reference tool for those interested in a basic understanding of the subject. Exercises, notes and exhaustive references follow each chapter, making it outstanding both as a text and reference for graduate students and researchers in graph theory and its applications. The author approaches the subject with a lively writing style. The reader will delight to discover that the topics in this book are coherently unified and include some of the deepest and most beautiful developments in graph theory.
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and exhaustively both the statement and proof of all the standard inequalities of analysis. The authors were well known for their powers of exposition and were able here to make the subject accessible to a wide audience of mathematicians.
This classic book is a encylopaedic and comprehensive account of the classical theory of analytical dynamics. The treatment is rigorous yet readable, starting from first principles with kinematics before moving to equations of motion and specific and explicit methods for solving them, with chapters devoted to particle dyanmics, rigid bodies, vibration, and dissipative systems. Hamilton's principle is introduced and then applied to dynamical systems, including three-body systems and celestial mechanics. Very many examples and exercisies are supplied throughout.
Originally published in 1934 in the Cambridge Tracts, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. The major part of the book is devoted to the analytical theory founded on the zeta-function of Riemann. Despite being out of print for a long time, this Tract still remains unsurpassed as an introduction to the field, combining an economy of detail with a clarity of exposition which eases the novice into this area.
The theory of surfaces has reached a certain stage of completeness and major efforts concentrate on solving concrete questions rather than developing further the formal theory. Many of these questions are touched upon in this classic volume: such as the classification of quartic surfaces, the description of moduli spaces for abelian surfaces, and the automorphism group of a Kummer surface. First printed in 1905 after the untimely death of the author, this work has stood for most of this century as one of the classic reference works in geometry.
This classic book gives a systematic account of transcendental number theory, that is numbers which cannot be expressed as the roots of algebraic equations having rational coefficients. The updated vo
This classic book, now re-issued in paperback, presents a detailed account of the mathematical theory of viscosity, thermal conduction and diffusion in non-uniform gases based on the solution of the Maxwell–Boltzmann equations. The theory of Chapman and Enskog, describing work on dense gases, quantum theory of collisions and the theory of conduction and diffusion in ionized gases in the presence of electric and magnetic fields, is extended in the later chapters. The third edition was first published in 1970 and included revisions to take account of extensions of the theory to fresh molecular models and of new methods used in discussing dense gases and plasmas. This reprint will therefore be of value to mathematicians, theoretical physicists and chemical engineers interested in gas theory and its applications.
This reissue of the classic 1932 edition of Lamb's Hydrodynamics is an indication of the lasting value of the work. Constantly in use since its first publication in 1892, this book is the definitive reference work for all fluid dynamicists. The new foreword by Professor R. Caflisch highlights the prominence of this treatise in the field and outlines the development of fluid mechanics that led to its publication. He also resolves possible conflicts with modern notation. Despite the rapid pace of research in modern fluid mechanics study and the advent of high-speed computers, Lamb's work remains a relevant, timeless classic.
In the summer semester of 1897 David Hilbert (1862–1943) gave an introductory course in Invariant Theory at the University of Gottingen. This book is an English translation of the handwritten notes taken from this course by Hilbert's student Sophus Marxen. The year 1897 was the perfect time for Hilbert to present an introduction to invariant theory as his research in the subject had been completed. His famous finiteness theorem had been proved and published in two papers that changed the course of invariant theory dramatically and that laid the foundation for modern commutative algebra. Thus these lectures take into account both the old approach of his predecessors and his newer ideas. This bridge from nineteenth- to twentieth-century mathematics makes these lecture notes a special and fascinating account of invariant theory. Hilbert's course was given at a level accessible to graduate students in mathematics, requiring only a familiarity with linear algebra and the basics of ring and