TOP
0
0
12/26年度盤點作業,門市店休一天,網路書店將暫停出貨,12/27將恢復正常營業,造成不便敬請見諒
3小時讀通幾何
滿額折

3小時讀通幾何

商品資訊

定價
:NT$ 340 元
優惠價
79268
庫存 > 10
下單可得紅利積點:8 點
商品簡介
作者簡介
目次
書摘/試閱
相關商品

商品簡介

日本數學協會副會長,教你從簡單的圖形入門,將幾何帶入數列、濃度的運算,挑戰圓與π的不可思議,認識畢達哥拉斯定理與三角函數的智慧,進而敲開微積分大門!
「只要會畫圖,就會幾何!」
「證明題不再是難題!」
「體驗幾何解題樂趣!」
透過「用畫圖來表示」的方式,將複雜的內容具體化,學會看穿「問題本質」的能力。
從理論到實際應用,甚至艱深的「三角函數」與「微積分」也變得有趣了!

第1章 幾何學入門
第2章 幾何的基礎在「變形」
第3章 挑戰!不可思議的圓與
第4章 畢達哥拉斯定理與三角函數的智慧
第5章 輕輕鬆鬆學會體積
第6章 圖形的全等與相似
第7章 用積分求曲線面積
第8章 不可思議的「幾何宇宙」


「幾何?雖然微積分完全搞不懂,但幾何都是跟圖形有關的,所以蠻喜歡的。」

出乎意外地,喜歡幾何的人似乎很多。因為在國中時期的數學,幾何有著只要加一條輔助線就能痛快解題的魅力。

但是,在討論幾何之前,會不會覺得「幾何」這個名詞有點奇特呢?為什麼會出現這樣的詞呢?

天文學之外,數學,特別是幾何學,也有蓬勃的發展。

尼羅河的氾濫,會讓此前的土地規劃一下子就泡湯,使人們必須重新測量土地。
「土地測量」在古希臘語(土地γη、測量μεϰρεω)中叫做geo(土地)metry(測量),一般是認為,geo的發音被轉變為漢語後,就被稱做「幾何」。

源於土地測量的幾何學是在求取三角形、四邊形、圓或四角錐(金字塔)等圖形之面積或體積的過程中,慢慢連串起來的學問。

幾何的進一步應用,則從橡膠幾何(拓撲學)、以蕨類植物的葉脈或河川的分布為對象的碎形幾何學、一直到可以聯繫到宇宙形狀的龐加萊猜想等,不愧是「最先端的數學」。

讓我們配合易懂的插圖,敲開幾何世界的大門吧。

 

作者簡介

岡部恒治
日本東京大學理學系研究所畢業。曾任埼玉大學經濟學系教授,現任埼玉大學名譽教授,日本數學協會副會長。1999年出版《不會做分數運算的大學生》(共同編著,東洋經濟新報社出版),引發日本社會對學習能力低落現象之討論,於2006年獲得日本數學協會出版獎。著有《漫畫幾何入門》、《漫畫微積分入門》(講談社)等,撰寫多本以全新角度切入問題的暢銷書。

本丸諒
橫濱市立大學畢業。日本數學協會會員。曾於出版社就職,並因而開啟數學科普作家的生涯。善於將概念由繁化簡,將錯綜複雜的內容簡要說明,自稱為「超翻譯」的寫作者。

譯者簡介
雲譯翻譯工作室
學日文很久的台灣人們+學中文很久的日本人,一群台師大學生在因緣際會下開始了翻譯生涯。期望用最簡單明瞭的表達,將日本世界的魅力化作熟悉文字,讓大眾能認識更多的未知,也希望再次藉由日文,來尋找願意與我們結緣的你。

大學時期,我(岡部)的指導教授田村一郎老師,每當遇到學生無法充分理解,或感覺似懂非懂的問題時,總會說「現在我們把遇到的問題,用畫圖來表示看看吧」。
雖然老師這麼說,但我在當時的研究小組裡所遇到的問題,都是超過四次元空間,即使可以理解題目的意義,也難以輕易在二次元的紙或黑板上表現出來。
但是我認為,透過「以畫圖表示」的程序,將複雜的內容具體化,學習者就可以由此學會「將問題簡化」的能力。

回溯數學的歷史,一般認為,數學是起源於算數與圖形的分析,因為這樣的緣故,「數學=幾何學(或哲學)」的觀念,普遍存在於數學有突破性發展的古希臘時代。
歐幾里得(西元前300年左右)統合了所有關於幾何的研究討論,寫成論著《歐幾里得幾何原本》。十七世紀初期,利瑪竇與徐光啟在中國翻譯此書,將《歐幾里得幾何原本》定名為《幾何原本》,《幾何原本》因此成為幾何學的濫觴,長久以來一直是世界數學教育的主流。幾何學對於科學具有很重要的支持作用。
但實際上,《幾何原本》中寫及的不僅只有幾何,其中還有三成以上是屬於現代的數論或方程式。
例如,質數有無限多個, 是無理數的證明,以及求取最大公因數的輾轉相除法,多是大家都曾聽說過的著名理論。
在《幾何原本》中,就以出現將數以線段的方式表現。在畢達哥拉斯定理中,以a代表邊長,則正方形面積為a2,這種「以幾何方式處理」的概念,則一貫應用到現在。
這些概念之所以能持續累積至今,正在於「以畫圖表示=理解」的形式,將幾何與解題連結在一起。
高斯曾說過:「數論是數學的皇后。」若他的說法為真,那麼幾何便是數學的國王。只要能善用幾何,便能從基礎開始,輕鬆了解數學。
這本書是為了讓大家都能品嘗以幾何解題的樂趣而書寫的作品,幾何的圖形特質,以漫畫形式來表現,我認為更是妙趣橫生。
文章的最後,感謝宮島麻衣女士為我們繪製了妙趣橫生的漫畫,長谷川愛美女士為我們設計版面,並在此向推薦我們執筆,科學書籍編輯部益田賢治先生與石井顯一先生,致上誠摯的謝意。

 

目次

序───3
第一章 幾何學入門
1-1 幾何是從哪裡來的?意義為何?
1-2 《幾何原本》的「點」、「線」、「面」
1-3 提高一個次元,解題立刻變簡單?
1-4 圓為什麼是360°?弧度又是什麼?
1-5 平行線竟然會相交…反思解題法!
1-6 簡化「內角和180°」的證明方法!
1-7 以轉鉛筆法測量角度
專欄:質疑歐幾里得?「幾何學中有帝王之路」的異想!
第二章 幾何的基礎在「變形」
2-1為什麼長方形面積是長×寬呢?
2-2面積不變,變成簡單的圖形
2-3改變形狀,簡化題目
2-4從三角形面積導出「數列公式」
2-5用面積思考鶴龜算,題目立刻變簡單
2-6食鹽水的濃度也能以面積法求出?
2-7蜂巢與狄利克雷圖
2-8三角形很堅固,四邊形比較弱
專欄:1796年3月30日發生的事情,解決了高斯對未來的煩惱
第三章 挑戰!不可思議的圓與π
3-1測量曲線的土地面積
3-2古埃及是用正方形來求圓面積?
3-3向萊因德紙草書的圓面積問題挑戰!
3-4用阿基米德窮盡法計算圓周率
3-5以直覺認識「圓的面積」
3-6 以重量求出圓周率的新方法!
3-7用牙籤求圓周率─布豐投針
3-8試證明圓周率比3.1大…
3-9內圓周和外圓周相差多少?
3-10克卜勒之從樸實的窮盡法發現了大世界!
專欄:阿基米德故意把錯誤的定理寫在信裡…
第四章 畢達哥拉斯定理與三角函數的智慧
4-1畢達哥拉斯定理是幾何學瑰寶!
4-2「無理數」誕生於幾何世界
4-3土地測量師與直角三角形
4-4頭腦體操:畢達哥拉斯定理的證明
4-5用三角形記憶sin、cos、tan
4-6運用廣泛的正弦定理、餘弦定理
4-7用木工角尺計算路徑
專欄:畢達哥拉斯「派」定理?
第五章 輕輕鬆鬆學會體積
5-1三角錐是角柱的1/3,實際體驗!
5-2卡瓦列里原理
5-3用卡瓦列里原理求出球體積!
5-4如何計算球的表面積
5-5推論地球的重量
5-6用圓頂平台求山的體積!
專欄:關孝和─將日本獨有的和算,提高至世界級
第六章 圓形的全等與相似
6-1全等與相似的誤解
6-2三角形的全等條件與相似條件
6-3利用相似測量金字塔高度
6-4以「空間圖形比」求出金字塔高度
6-5用棉紙測量樹的高度
6-6拋物線皆相似
6-7線對稱、點對稱
6-8徽章設計的對稱性問題
專欄:數學家泰勒斯的智慧
第七章 用積分求曲線面積
7-1估計數學島的面積
7-2數學島的真正面積
7-3曲線和直線所包圍的面積
7-4以積分算「區間」面積
7-5以積分計算Xn
7-6用切片來計算體積
7-7用積分求迴轉物體的體積
7-8證明圓錐體積「恰好是圓柱的1/3」
專欄:牛頓是「最後的蘇美人」?
第八章不可思議的「幾何宇宙」
8-1拓樸學是橡膠幾何學
8-2變形地圖是「切近本質」的拓樸學發想
8-3以「一筆畫發想」解開艱深問題
8-4「非歐幾里德」的新式幾何學
8-5拒絕菲爾茲獎與一百萬美元的數學家
8-6碎形為「自我相似」的幾何學
專欄:歐拉給公主的信-「幾何學中的帝王之路」
索引

 

書摘/試閱

「幾何?雖然我完全不懂微積分,但幾何都是跟圖形有關的,所以還蠻喜歡的。」令人意外地,喜歡幾何的人似乎不少。在國中時期的數學,只要加一條輔助線,就能痛快解開幾何問題,具有這種魅力。
但是,在討論幾何之前,你不覺得「幾何」是個很怪的名詞嗎?為什麼會出現這種名詞呢?
回溯歷史,古埃及地區常有尼羅河氾濫的問題,就如「埃及是尼羅河的贈禮」這句話所說,尼羅河的定期氾濫,促成了埃及地區在天文學等方面的發展。
除了天文學,埃及的數學,尤其是幾何學,也有蓬勃的發展。尼羅河的氾濫,使得土地規劃運用必須重來,所以人們必須重新測量土地。「土地測量」在古希臘語(土地γη、測量μεϰρεω)中,叫做geo(土地)metry(測量),一般認為,geo的發音到中國變成「幾何」,而「幾何」這個詞傳到日本,就變成「きか」(KIKA)這樣的發音了。
源於土地測量的幾何學,是在求取三角形、四邊形、圓或四角錐(金字塔)等圖形面積或體積,在探究的過程中,慢慢連結起來的學問。
幾何學的進一步應用,包括橡膠幾何(拓撲學),以蕨類植物的葉脈或河川的分布為對象的碎形幾何學,敘述宇宙形狀的龐加萊猜想等,可見幾何果然是「最先端的數學」啊。

《幾何原本》中的「點」、「線」、「面」

歐幾里得是西元前300年時期的數學家,他將在希臘時代所有數學的討論成果,都統整歸納成《幾何原本》一書。
在《幾何原本》中,先列舉出嚴密的「定義」,再舉出不須證明的公認「公理(公設)」,並詳細介紹近500個經定義與公理驗證過的「定理」,這樣的步驟非常科學。
在《幾何原本》中,歐幾里得對於「幾何起點」的「點」、「線」、「面」,作出了不同於人們日常生活中所感受到的定義。
首先來說「點」。
若我們以鉛筆記下一點,無論多小的點,都佔有空間,但歐幾里得卻定義「點既無寬度亦無長度(當然更無面積)」。
接著,如果我們畫「線」,無論畫得多細,線必然佔有寬度,但書中定義「線並無寬度」。
「面」也是。觀察一張紙,雖然紙的厚度難以覺察,但厚度其實是存在的。以本書為例,100張紙(200頁),約為一公分的厚度。但歐幾里得定義「面並無厚度」。
幾何學可以運用於土地測量,感覺起來與日常生活相關,具有實際作用,但歐幾里得屏除模稜兩可的感覺,而以嚴密的定義、公理,以及推導出的眾多定理,建構起現代數學的基礎。

解題變簡單?

將「點」、「線」、「面」、「立體」以「次元」來表示,會變成「0次元」、「一次元」、「二次元」、「三次元」。近來「3D(三次元)電影」大受歡迎,為觀眾提供了嶄新的視野。
一直以來,數學家常將次元視為一種研究主題或研究工具,究竟「將次元作為研究工具」指的是什麼意思呢?
假設在一次元「線的世界」中,有一隻螞蟻a正由右向左移動,而螞蟻b正由左向右走來,兩隻螞蟻相遇時,已無路可走。但螞蟻若是活在二次元的「平面世界」裡,問題就能解決,由於是寬廣的平面,螞蟻只要稍微往旁邊移動就行了。
對於二次元的螞蟻而言,生活的平面世界究竟是①平整的表面,②球面,③中間有空洞的甜甜圈,牠是無法知道的。但若是飛翔在三次元的蒼蠅或飛鳥,對於螞蟻生活在怎樣的空間,則可完全一目了然。
但我們不該取笑螞蟻。過去,為了「地球是平面,還是球面」這個問題,生活在地球上的人們曾經找不到答案。
由於人類無法從宇宙觀察地球,因此,為了瞭解宇宙的存在形態,可使用把提高次元的方法。
如此,只要拉高一個次元,不僅解題變簡單,視野也能隨之擴張。

 

您曾經瀏覽過的商品

購物須知

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:79 268
庫存 > 10

暢銷榜

客服中心

收藏

會員專區