商品簡介
目次
相關商品
商品簡介
本書原著作者John Ockendon是英國牛津大學博士,英國皇家學會fellow,是國際著名的“Study Group”討論會的創始人之一。他是著名的偏微分方程專家,在自由邊值問題、工業問題的偏微分方程模型等方面做出過重要的貢獻。 本書提供了來自工業、科技和其他現實世界中的大量偏微分方程模型,并緊密結合這些模型系統地介紹了偏微分方程的基本理論和方法。書中包含了偏微分方程最新的研究成果,特別是關于自由邊值問題和非線性偏微分方程等內容十分新穎。本書主要內容包括:一階標量擬線性方程;一階擬線性方程組;二階標量方程簡介;雙曲型方程;橢圓型方程;拋物型方程;自由邊值問題;非擬線性方程和其他課題。 本書適合作為數學專業研究生教材,也可作為數學專業高年級本科生的選修課程教材。由于它的內容結合實際,也可供其他相關專業的研究牛和科技人員閱讀參考。
目次
第二版序
第一版序
引言
第1章 一階標量擬線性方程
1.1 引言
1.2 Cauchy數據
1.3 特徵線
1.3.1 線性方程和半線性方程
1.4 定義域和破裂
1.5 擬線性方程
1.6 間斷解
1.7 弱解
1.8 多自變量
1.9 附錄
習題
第2章 一階擬線性方程組
2.1 動機與模型
2.2 Cauchy數據和特徵線
2.3 Cauchy-Kowalevskaja定理
2.4 雙曲性
2.4.1 2×2方程組
2.4.2 n維方程組
2.4.3 例子
2.5 弱解和激波
2.5.1 因果律
2.5.2 黏性和熵
2.5.3 其他不連續性
2.6 具有多于兩個自變量的方程組
習題
第3章 二階標量方程引論
3.1 緒論
3.2 半線性方程的Cauchy問題
3.3 特徵線
3.4 半線性方程的標準型
3.4.1 雙曲型方程
3.4.2 橢圓型方程
3.4.3 拋物型方程
3.5 一些一般注記
習題
第4章 雙曲型方程
4.1 引言
4.2 線性方程:cauchy問題的解
4.2.1 Riemann函數的特定求法
4.2.2 Riemann函數的基本原理
4.2.3 Riemann函數表達式的含義
4.3 無Cauchy數據的波動方程
4.3.1 強間斷的邊界數據
4.4 變換和特徵函數展開
4.5 對波動方程的應用
4.5.1 一維空間的波動方程
4.5.2 圓和球對稱性
4.5.3 電報方程
4.5.4 周期介質中的波
4.5.5 一般注記
4.6 多于兩個自變量的波動方程
4.6.1 降維法和Huygens原理
4.6.2 雙曲性和類時性
4.7 高階方程組
4.7.1 線性彈性力學
4.7.2 Maxwell電磁波方程組
4.8 非線性性
4.8.1 簡單波
4.8.2 速度圖方法
4.8.3 Liouville方程
4.8.4 另一種方法
習題
第5章 橢圓型方程
5.1 模型
5.1.1 萬有引力
5.1.2 電磁場
5.1.3 熱傳導
5.1.4 力學
5.1.5 聲學
5.1.6 機翼理論與斷裂
5.2 適定的邊界數據
5.2.1 Laplace方程和Poisson方程
5.2.2 更一般的橢圓型方程
5.3 最大值原理
5.4 變分原理
5.5 Green函數
5.5.1 經典函數公式
5.5.2 廣義函數公式
5.6 Green函數的顯式表達式
5.6.1 Laplace方程與Poisson方程
5.6.2 Helmholtz方程
5.6.3 修正Helmholtz方程
5.7 Green函數,特徵函數展開與變換
5.7.1 特徵值與特徵函數
5.7.2 Green函數與變換
5.8 橢圓型方程的變換解
5.8.1 柱坐標對稱下的Laplace方程:Hankel變換
5.8.2 楔形幾何形狀內的:Laplace方程;Mellin變換
5.8.3 Helmholtz方程
5.8.4 高階問題
5.9 復變量方法
5.9.1 共形映射
5.9.2 Riemann-Hilbert問題
5.9.3 混合邊值問題和奇異積分方程
5.9.4 Wiener-Hopf方法
5.9.5 奇異性和指標
5.10 局部化邊界數據
5.11 非線性問題
5.11.1 非線性模型
5.11.2 存在性和唯一性
5.11.3 獨立參數和奇異行為
5.12 再論Liouville方程
5.13 後記:▽2或者-△?
習題
第6章 拋物型方程
前言
6.1 擴散過程的線性模型
6.1.1 熱量和質量的傳遞
6.1.2 概率與金融
6.1.3 電磁學
6.1.4 一般注記
6.2 初一邊值條件
6.3 極值原理和適定性
6.3.1 強極值原理
6.4 Green函數和熱傳導方程的變換方法
6.4.1 Green函數:一般注記
6.4.2 無邊界熱傳導方程的Green函數
6.4.3 邊值問題
6.4.4 對流一擴散問題
6.5 相似解和群
6.5.1 常微分方程
6.5.2 偏微分方程
6.5.3 一般注記
6.6 非線性方程
6.6.1 模型
6.6.2 理論注記
6.6.3 相似解與行波
6.6.4 比較方法與極值原理
6.6.5 破裂
6.7 高階方程和方程組
6.7.1 高階標量問題
6.7.2 高階方程組
習題
第7章 自由邊值問題
7.1 引言與模型
7.1.1 Stefan問題及相關問題
7.1.2 擴散中的其他自由邊值問題
7.1.3 力學中的某些自由邊值問題
7.2 穩定性和適定性
7.2.1 表面重力波
7.2.2 渦片
7.2.3 Hele-Shaw流
7.2.4 激波
7.3 經典解
7.3.1 比較方法
7.3.2 能量方程與守恆量
7.3.3 Green函數方法與積分方程
7.4 弱解和變分方法
7.4.1 變分方法
7.4.2 焓方法
7.5 顯式解
7.5.1 相似解
7.5.2 復變量方法
7.6 正則化
7.7 後記
習題
第8章 非擬線性方程
8.1 引言
8.2 一階標量方程
8.2.1 兩個自變量
8.2.2 更多自變量的情形
8.2.3 短時距方程
8.2.4 特徵值問題
8.2.5 色散
8.2.6 次特徵
8.3 Hamilton-Jacobi方程和量子力學
8.4 高階方程
習題
第9章 雜記
9.1 引言
9.2 線性方程組重提
9.2.1 線性方程組:Green函數
9.2.2 線性彈性
9.2.3 線性無黏水動力學
9.2.4 波傳播的放射條件
9.3 復特徵和分類
9.4 有一個實特徵的擬線性組
9.4.1 具有電阻發熱的熱傳導
9.4.2 空間電荷
9.4.3 流體動力學:Navier-Stokes方程
9.4.4 無黏流:Euler方程
9.4.5 黏性流
9.5 介質之間的相互作用
9.5.1 流體/固體聲學相互作用
9.5.2 流體/流體重力波相互作用
9.6 規範與不變性
9.7 孤立子
習題
結語
參考文獻
索引
第一版序
引言
第1章 一階標量擬線性方程
1.1 引言
1.2 Cauchy數據
1.3 特徵線
1.3.1 線性方程和半線性方程
1.4 定義域和破裂
1.5 擬線性方程
1.6 間斷解
1.7 弱解
1.8 多自變量
1.9 附錄
習題
第2章 一階擬線性方程組
2.1 動機與模型
2.2 Cauchy數據和特徵線
2.3 Cauchy-Kowalevskaja定理
2.4 雙曲性
2.4.1 2×2方程組
2.4.2 n維方程組
2.4.3 例子
2.5 弱解和激波
2.5.1 因果律
2.5.2 黏性和熵
2.5.3 其他不連續性
2.6 具有多于兩個自變量的方程組
習題
第3章 二階標量方程引論
3.1 緒論
3.2 半線性方程的Cauchy問題
3.3 特徵線
3.4 半線性方程的標準型
3.4.1 雙曲型方程
3.4.2 橢圓型方程
3.4.3 拋物型方程
3.5 一些一般注記
習題
第4章 雙曲型方程
4.1 引言
4.2 線性方程:cauchy問題的解
4.2.1 Riemann函數的特定求法
4.2.2 Riemann函數的基本原理
4.2.3 Riemann函數表達式的含義
4.3 無Cauchy數據的波動方程
4.3.1 強間斷的邊界數據
4.4 變換和特徵函數展開
4.5 對波動方程的應用
4.5.1 一維空間的波動方程
4.5.2 圓和球對稱性
4.5.3 電報方程
4.5.4 周期介質中的波
4.5.5 一般注記
4.6 多于兩個自變量的波動方程
4.6.1 降維法和Huygens原理
4.6.2 雙曲性和類時性
4.7 高階方程組
4.7.1 線性彈性力學
4.7.2 Maxwell電磁波方程組
4.8 非線性性
4.8.1 簡單波
4.8.2 速度圖方法
4.8.3 Liouville方程
4.8.4 另一種方法
習題
第5章 橢圓型方程
5.1 模型
5.1.1 萬有引力
5.1.2 電磁場
5.1.3 熱傳導
5.1.4 力學
5.1.5 聲學
5.1.6 機翼理論與斷裂
5.2 適定的邊界數據
5.2.1 Laplace方程和Poisson方程
5.2.2 更一般的橢圓型方程
5.3 最大值原理
5.4 變分原理
5.5 Green函數
5.5.1 經典函數公式
5.5.2 廣義函數公式
5.6 Green函數的顯式表達式
5.6.1 Laplace方程與Poisson方程
5.6.2 Helmholtz方程
5.6.3 修正Helmholtz方程
5.7 Green函數,特徵函數展開與變換
5.7.1 特徵值與特徵函數
5.7.2 Green函數與變換
5.8 橢圓型方程的變換解
5.8.1 柱坐標對稱下的Laplace方程:Hankel變換
5.8.2 楔形幾何形狀內的:Laplace方程;Mellin變換
5.8.3 Helmholtz方程
5.8.4 高階問題
5.9 復變量方法
5.9.1 共形映射
5.9.2 Riemann-Hilbert問題
5.9.3 混合邊值問題和奇異積分方程
5.9.4 Wiener-Hopf方法
5.9.5 奇異性和指標
5.10 局部化邊界數據
5.11 非線性問題
5.11.1 非線性模型
5.11.2 存在性和唯一性
5.11.3 獨立參數和奇異行為
5.12 再論Liouville方程
5.13 後記:▽2或者-△?
習題
第6章 拋物型方程
前言
6.1 擴散過程的線性模型
6.1.1 熱量和質量的傳遞
6.1.2 概率與金融
6.1.3 電磁學
6.1.4 一般注記
6.2 初一邊值條件
6.3 極值原理和適定性
6.3.1 強極值原理
6.4 Green函數和熱傳導方程的變換方法
6.4.1 Green函數:一般注記
6.4.2 無邊界熱傳導方程的Green函數
6.4.3 邊值問題
6.4.4 對流一擴散問題
6.5 相似解和群
6.5.1 常微分方程
6.5.2 偏微分方程
6.5.3 一般注記
6.6 非線性方程
6.6.1 模型
6.6.2 理論注記
6.6.3 相似解與行波
6.6.4 比較方法與極值原理
6.6.5 破裂
6.7 高階方程和方程組
6.7.1 高階標量問題
6.7.2 高階方程組
習題
第7章 自由邊值問題
7.1 引言與模型
7.1.1 Stefan問題及相關問題
7.1.2 擴散中的其他自由邊值問題
7.1.3 力學中的某些自由邊值問題
7.2 穩定性和適定性
7.2.1 表面重力波
7.2.2 渦片
7.2.3 Hele-Shaw流
7.2.4 激波
7.3 經典解
7.3.1 比較方法
7.3.2 能量方程與守恆量
7.3.3 Green函數方法與積分方程
7.4 弱解和變分方法
7.4.1 變分方法
7.4.2 焓方法
7.5 顯式解
7.5.1 相似解
7.5.2 復變量方法
7.6 正則化
7.7 後記
習題
第8章 非擬線性方程
8.1 引言
8.2 一階標量方程
8.2.1 兩個自變量
8.2.2 更多自變量的情形
8.2.3 短時距方程
8.2.4 特徵值問題
8.2.5 色散
8.2.6 次特徵
8.3 Hamilton-Jacobi方程和量子力學
8.4 高階方程
習題
第9章 雜記
9.1 引言
9.2 線性方程組重提
9.2.1 線性方程組:Green函數
9.2.2 線性彈性
9.2.3 線性無黏水動力學
9.2.4 波傳播的放射條件
9.3 復特徵和分類
9.4 有一個實特徵的擬線性組
9.4.1 具有電阻發熱的熱傳導
9.4.2 空間電荷
9.4.3 流體動力學:Navier-Stokes方程
9.4.4 無黏流:Euler方程
9.4.5 黏性流
9.5 介質之間的相互作用
9.5.1 流體/固體聲學相互作用
9.5.2 流體/流體重力波相互作用
9.6 規範與不變性
9.7 孤立子
習題
結語
參考文獻
索引
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。
特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。
無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。