Analysis In Vector Spaces
商品資訊
ISBN13:9780470148242
出版社:John Wiley & Sons Inc
作者:Akcoglu
出版日:2009/01/20
裝訂/頁數:精裝/480頁
規格:24.1cm*15.9cm*3.2cm (高/寬/厚)
定價
:NT$ 7142 元優惠價
:90 折 6428 元
若需訂購本書,請電洽客服 02-25006600[分機130、131]。
商品簡介
作者簡介
名人/編輯推薦
目次
相關商品
商品簡介
A rigorous introduction to calculus in vector spaces
The concepts and theorems of advanced calculus combined with related computational methods are essential to understanding nearly all areas of quantitative science. Analysis in Vector Spaces presents the central results of this classic subject through rigorous arguments, discussions, and examples. The book aims to cultivate not only knowledge of the major theoretical results, but also the geometric intuition needed for both mathematical problem-solving and modeling in the formal sciences.
The authors begin with an outline of key concepts, terminology, and notation and also provide a basic introduction to set theory, the properties of real numbers, and a review of linear algebra. An elegant approach to eigenvector problems and the spectral theorem sets the stage for later results on volume and integration. Subsequent chapters present the major results of differential and integral calculus of several variables as well as the theory of manifolds. Additional topical coverage includes:
Sets and functions
Real numbers
Vector functions
Normed vector spaces
First- and higher-order derivatives
Diffeomorphisms and manifolds
Multiple integrals
Integration on manifolds
Stokes' theorem
Basic point set topology
Numerous examples and exercises are provided in each chapter to reinforce new concepts and to illustrate how results can be applied to additional problems. Furthermore, proofs and examples are presented in a clear style that emphasizes the underlying intuitive ideas. Counterexamples are provided throughout the book to warn against possible mistakes, and extensive appendices outline the construction of real numbers, include a fundamental result about dimension, and present general results about determinants.
Assuming only a fundamental understanding of linear algebra and single variable calculus, Analysis in Vector Spaces is an excellent book for a second course in analysis for mathematics, physics, computer science, and engineering majors at the undergraduate and graduate levels. It also serves as a valuable reference for further study in any discipline that requires a firm understanding of mathematical techniques and concepts.
The concepts and theorems of advanced calculus combined with related computational methods are essential to understanding nearly all areas of quantitative science. Analysis in Vector Spaces presents the central results of this classic subject through rigorous arguments, discussions, and examples. The book aims to cultivate not only knowledge of the major theoretical results, but also the geometric intuition needed for both mathematical problem-solving and modeling in the formal sciences.
The authors begin with an outline of key concepts, terminology, and notation and also provide a basic introduction to set theory, the properties of real numbers, and a review of linear algebra. An elegant approach to eigenvector problems and the spectral theorem sets the stage for later results on volume and integration. Subsequent chapters present the major results of differential and integral calculus of several variables as well as the theory of manifolds. Additional topical coverage includes:
Sets and functions
Real numbers
Vector functions
Normed vector spaces
First- and higher-order derivatives
Diffeomorphisms and manifolds
Multiple integrals
Integration on manifolds
Stokes' theorem
Basic point set topology
Numerous examples and exercises are provided in each chapter to reinforce new concepts and to illustrate how results can be applied to additional problems. Furthermore, proofs and examples are presented in a clear style that emphasizes the underlying intuitive ideas. Counterexamples are provided throughout the book to warn against possible mistakes, and extensive appendices outline the construction of real numbers, include a fundamental result about dimension, and present general results about determinants.
Assuming only a fundamental understanding of linear algebra and single variable calculus, Analysis in Vector Spaces is an excellent book for a second course in analysis for mathematics, physics, computer science, and engineering majors at the undergraduate and graduate levels. It also serves as a valuable reference for further study in any discipline that requires a firm understanding of mathematical techniques and concepts.
作者簡介
MUSTAFA A. AKCOGLU, PhD, is Professor Emeritus in the Department of Mathematics at the University of Toronto, Canada. He has authored or coauthored over sixty journal articles on the topics of ergodic theory, functional analysis, and harmonic analysis.
PAUL F.A. BARTHA, PhD, is Associate Professor in the Department of Philosophy at The University of British Columbia, Canada. He has authored or coauthored journal articles on topics such as probability and symmetry, probabilistic paradoxes, and the general philosophy of science.
DZUNG MINH HA, PhD, is Associate Professor in the Department of Mathematics at Ryerson University, Canada. Dr. Ha focuses his research in the areas of ergodic theory and operator theory.
PAUL F.A. BARTHA, PhD, is Associate Professor in the Department of Philosophy at The University of British Columbia, Canada. He has authored or coauthored journal articles on topics such as probability and symmetry, probabilistic paradoxes, and the general philosophy of science.
DZUNG MINH HA, PhD, is Associate Professor in the Department of Mathematics at Ryerson University, Canada. Dr. Ha focuses his research in the areas of ergodic theory and operator theory.
名人/編輯推薦
"The authors do not shy away from doing the hard work involved in proving say, the change of variable theorem for integration, the inverse function theorem, and Stokes's theorem--work which is not generally seen in standard calculus books--and thus they are quite correct when they state that students need a firm grip on single-variable calculus and some linear algebra, and a good comfort level with the comprehension and construction of rigorous proofs. Includes many examples and an excellent selection of exercises." (CHOICE, November 2010)
目次
Preface.
PART I BACKGROUND MATERIAL.
1 Sets and Functions.
1.1 Sets in General.
1.2 Sets of Numbers.
1.3 Functions.
2 Real Numbers.
2.1 Review of the Order Relations.
2.2 Completeness of Real Numbers.
2.3 Sequences of Real Numbers.
2.4 Subsequences.
2.5 Series of Real Numbers.
2.6 Intervals and Connected Sets.
3 Vector Functions.
3.1 Vector Spaces: The Basics.
3.2 Bilinear Functions.
3.3 Multilinear Functions.
3.4 Inner Products.
3.5 Orthogonal Projections.
3.6 Spectral Theorem.
PART II DIFFERENTIATION.
4 Normed Vector Spaces.
4.1 Preliminaries.
4.2 Convergence in Normed Spaces.
4.3 Norms of Linear and Multilinear Transformations.
4.4 Continuity in Normed Spaces.
4.5 Topology of Normed Spaces.
5 Derivatives.
5.1 Functions of a Real Variable.
5.2 Differentiable Functions.
5.3 Existence of Derivatives.
5.4 Partial Derivatives.
5.5 Rules of Differentiation.
5.6 Differentiation of Products.
6 Diffeomorphisms and Manifolds.
6.1 The Inverse Function Theorem.
6.2 Graphs.
6.3 Manifolds in Parametric Representations.
6.4 Manifolds in Implicit Representations.
6.5 Differentiation on Manifolds.
7 Higher-Order Derivatives.
7.1 Definitions.
7.2 Change of Order in Differentiation.
7.3 Sequences of Polynomials.
7.4 Local Extremal Values.
PART III INTEGRATION.
8 Multiple Integrals.
8.1 Jordan Sets and Volume.
8.2 Integrals.
8.3 Images of Jordan Sets.
8.4 Change of Variables.
9 Integration on Manifolds.
9.1 Euclidean Volumes.
9.2 Integration on Manifolds.
9.3 Oriented Manifolds.
9.4 Integrals of Vector Fields.
9.5 Integrals of Tensor Fields.
9.6 Integration on Graphs.
10 Stokes’ Theorem.
10.1 Basic Stokes’ Theorem.
10.2 Flows.
10.3 Flux and Change of Volume in a Flow.
10.4 Exterior Derivatives.
10.5 Regular and Almost Regular Sets.
10.6 Stokes’ Theorem on Manifolds.
PART IV APPENDICES.
Appendix A: Construction of the Real Numbers.
A.1 Field and Order Axioms in Q.
A.2 Equivalence Classes of Cauchy Sequences in Q.
A.3 Completeness of R.
Appendix B: Dimension of a Vector Space.
B.1 Bases and Linearly Independent Subsets.
Appendix C: Determinants.
C.1 Permutations.
C.2 Determinants of Square Matrices.
C.3 Determinant Functions.
C.4 Determinant of a Linear Transformation.
C.5 Determinants on Cartesian Products.
C.6 Determinants in Euclidean Spaces.
C.7 Trace of an Operator.
Appendix D: Partitions of Unity.
D.1 Partitions of Unity.
Index.
PART I BACKGROUND MATERIAL.
1 Sets and Functions.
1.1 Sets in General.
1.2 Sets of Numbers.
1.3 Functions.
2 Real Numbers.
2.1 Review of the Order Relations.
2.2 Completeness of Real Numbers.
2.3 Sequences of Real Numbers.
2.4 Subsequences.
2.5 Series of Real Numbers.
2.6 Intervals and Connected Sets.
3 Vector Functions.
3.1 Vector Spaces: The Basics.
3.2 Bilinear Functions.
3.3 Multilinear Functions.
3.4 Inner Products.
3.5 Orthogonal Projections.
3.6 Spectral Theorem.
PART II DIFFERENTIATION.
4 Normed Vector Spaces.
4.1 Preliminaries.
4.2 Convergence in Normed Spaces.
4.3 Norms of Linear and Multilinear Transformations.
4.4 Continuity in Normed Spaces.
4.5 Topology of Normed Spaces.
5 Derivatives.
5.1 Functions of a Real Variable.
5.2 Differentiable Functions.
5.3 Existence of Derivatives.
5.4 Partial Derivatives.
5.5 Rules of Differentiation.
5.6 Differentiation of Products.
6 Diffeomorphisms and Manifolds.
6.1 The Inverse Function Theorem.
6.2 Graphs.
6.3 Manifolds in Parametric Representations.
6.4 Manifolds in Implicit Representations.
6.5 Differentiation on Manifolds.
7 Higher-Order Derivatives.
7.1 Definitions.
7.2 Change of Order in Differentiation.
7.3 Sequences of Polynomials.
7.4 Local Extremal Values.
PART III INTEGRATION.
8 Multiple Integrals.
8.1 Jordan Sets and Volume.
8.2 Integrals.
8.3 Images of Jordan Sets.
8.4 Change of Variables.
9 Integration on Manifolds.
9.1 Euclidean Volumes.
9.2 Integration on Manifolds.
9.3 Oriented Manifolds.
9.4 Integrals of Vector Fields.
9.5 Integrals of Tensor Fields.
9.6 Integration on Graphs.
10 Stokes’ Theorem.
10.1 Basic Stokes’ Theorem.
10.2 Flows.
10.3 Flux and Change of Volume in a Flow.
10.4 Exterior Derivatives.
10.5 Regular and Almost Regular Sets.
10.6 Stokes’ Theorem on Manifolds.
PART IV APPENDICES.
Appendix A: Construction of the Real Numbers.
A.1 Field and Order Axioms in Q.
A.2 Equivalence Classes of Cauchy Sequences in Q.
A.3 Completeness of R.
Appendix B: Dimension of a Vector Space.
B.1 Bases and Linearly Independent Subsets.
Appendix C: Determinants.
C.1 Permutations.
C.2 Determinants of Square Matrices.
C.3 Determinant Functions.
C.4 Determinant of a Linear Transformation.
C.5 Determinants on Cartesian Products.
C.6 Determinants in Euclidean Spaces.
C.7 Trace of an Operator.
Appendix D: Partitions of Unity.
D.1 Partitions of Unity.
Index.
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
外文書商品之書封,為出版社提供之樣本。實際出貨商品,以出版社所提供之現有版本為主。部份書籍,因出版社供應狀況特殊,匯率將依實際狀況做調整。
無庫存之商品,在您完成訂單程序之後,將以空運的方式為你下單調貨。為了縮短等待的時間,建議您將外文書與其他商品分開下單,以獲得最快的取貨速度,平均調貨時間為1~2個月。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。