現代傅里葉分析(第2版)(簡體書)
商品資訊
ISBN13:9787510040603
出版社:世界圖書(北京)出版公司
作者:格拉法克斯
出版日:2011/01/01
裝訂/頁數:平裝/504頁
規格:26cm*19cm (高/寬)
人民幣定價:59 元
定價
:NT$ 354 元優惠價
:87 折 308 元
絕版無法訂購
商品簡介
作者簡介
名人/編輯推薦
目次
相關商品
商品簡介
格拉法克斯編著的本書的作品旨在為讀者提供學習歐幾里得調和解析領域的理論基礎。原始版本是以單卷集發布的,但是由于其體積、范圍和新材料的增加,第二版改為兩卷集發行。目前的這個版本包括了新的一章講述時頻分析和Carleson-Hunt定理。第一卷包括一些基礎經典話題,包括插值、傅里葉級數、傅里葉變換、極大值函數、奇異積分和Littlewood-Paley定理。第二卷包括更多現代話題,如函數空間、原子分解、非卷積型的奇異積分和權重不等式。
作者簡介
作者:(美)格拉法克斯
名人/編輯推薦
格拉法克斯編著的《現代傅里葉分析》的作品旨在為讀者提供學習歐幾里得調和解析領域的理論基礎。原始版本是以單卷集發布的,但是由于其體積、范圍和新材料的增加,第二版改為兩卷集發行。目前的這個版本包括了新的一章講述時頻分析和Carleson-Hunt定理。第一卷包括一些基礎經典話題,包括插值、傅里葉級數、傅里葉變換、極大值函數、奇異積分和Littlewood-Paley定理。第二卷包括更多現代話題,如函數空間、原子分解、非卷積型的奇異積分和權重不等式。
目次
6 smoothness and function spaces
6.1 riesz and bessel potentials, fractional integrals
6.1.1 riesz potentials
6.1.2 bessel potentials
exercises
6.2 sobolev spaces
6.2.1 definition and basic properties of general sobolev spaces
6.2.2 littlewood-paley characterization of inhomogeneous
sobolev spaces
6.2.3 littlewood-paley characterization of homogeneous
sobolev spaces
exercises
6.3 lipschitz spaces
6.3.1 introduction to lipschitz spaces
6.3.2 littlewood-paley characterization of homogeneous
lipschitz spaces
6.3.3 littlewood-paley characterization of inhomogeneous
lipschitz spaces
exercises
6.4 hardy spaces
6.4.1 definition of hardy spaces
6.4.2 quasinorm equivalence of several maximal functions
6.4.3 consequences of the characterizations of hardy spaces
6.4.4 vector-valued hp and its characterizations
6.4.5 singular integrals on hardy spaces
6.4.6 the littlewood-paley characterization of hardy spaces
exercises
6.5 besov-lipschitz and triebel-lizorkin spaces
6.5.1 introduction of function spaces
6.5.2 equivalence of definitions
exercises
6.6 atomic decomposition
6.6.1 the space of sequences fa,qp
6.6.2 the smooth atomic decomposition of fa,q
6.6.3 the nonsmooth atomic decomposition of fa,q
6.6.4 atomic decomposition of hardy spaces
exercises
6.7 singular integrals on function spaces
6.7.1 singular integrals on the hardy space ht
6.7.2 singular integrals on besov-lipschitz spaces
6.7.3 singular integrals on hp(rn)
6.7.4 a singular integral characterization ofh1 (rn)
exercises
7 bmo and carleson measures
7.1 functions of bounded mean oscillation
7.1.1 definition and basic properties of bmo
7.1.2 the john-nirenberg theorem
7.1.3 consequences of theorem 7.1.6
exercises
7.2 duality between h1 and bmo
exercises
7.3 nontangential maximal functions and carleson measures
7.3.1 definition and basic properties of carleson measures
7.3.2 bmo functions and carleson measures
exercises
7.4 the sharp maximal function
7.4.1 definition and basic properties of the sharp maximal function
7.4.2 a good lambda estimate for the sharp function
7.4.3 interpolation using bmo
7.4.4 estimates for singular integrals involving the sharp function
exercises
7.5 commutators of singular integrals with bmo functions
7.5.1 an orlicz-type maximal function
7.5.2 a pointwise estimate for the commutator
7.5.3 lp boundedness of the commutator
exercises z
8 singular integrals of nonconvolution type
8.1 general background and the role of bmo
8.1.1 standard kernels
8.1.2 operators associated with standard kernels
8.1.3 calder6n-zygmund operators acting on bounded functions
exercises
8.2 consequences of l2 boundedness
8.2.1 weaktype (1, i) and/_,p boundedness of singular integrals
8.2.2 boundedness of maximal singular integrals
8.2.3 h1 → l1 and l∞→bmo boundedness of singular integrals
exercises
8.3 the t(1) theorem
8.3.1 preliminaries and statement of the theorem
8.3.2 the proof of theorem 8.3.3
8.3.3 an application
exercises
8.4 paraproducts
8.4.1 introduction to paraproducts
8.4.2 l2 boundedness of paraproducts
8.4.3 fundamental properties of paraproducts
exercises
8.5 an almost orthogonality lemma and applications
8.5.1 the cotlar-knapp-stein almost orthogonality lemma
8.5.2 an application
8.5.3 almost orthogonality and the t(1) theorem
8.5.4 pseudodifferential operators
exercises
8.6 the cauchy integral of caldertn and the t(b) theorem
8.6.1 introduction of the cauchy integral operator along a lipschitz curve
8.6.2 resolution of the cauchy integral and reduction of its l2 boundedness to a quadratic estimate
8.6.3 a quadratic t(1) type theorem
8.6.4 a t(b) theorem and the l2 boundedness of the cauchy integral
exercises
8.7 square roots of elliptic operators
8.7.1 preliminaries and statement of the main result
8.7.2 estimates for elliptic operators on rn
8.7.3 reduction to a quadratic estimate
8.7.4 reduction to a carleson measure estimate
8.7.5 the t(b) argument
8.7.6 the proof of lemma 8.7.9
exercises
9 weighted inequalities
9.1 the at, condition
9.1.1 motivation for the at, condition
9.1.2 properties of at, weights
exercises
9.2 reverse htlder inequality and consequences
9.2.1 the reverse helder property of at, weights
9.2.2 consequences of the reverse holder property
exercises
9.3 the a∞ condition
9.3.1 the class of a∞ weights
9.3.2 characterizations of a∞ weights
exercises
9.4 weighted norm inequalities for singular integrals
9.4.1 a review of singular integrals
9.4.2 a good lambda estimate for singular integrals
9.4.3 consequences of the good lambda estimate
9.4.4 necessity of the at, condition
exercises
9.5 further properties of ap weights
9.5.1 factorization of weights
9.5.2 extrapolation from weighted estimates on a single d~0
9.5.3 weighted inequalities versus vector-valued inequalities
exercises
10 boundedness and convergence of fourier integrals
10.1 the multiplier problem for the ball
10.1.1 sprouting of triangles
10.1.2 the counterexample
exercises
10.2 bochner-riesz means and the carleson-sjolin theorem
10.2.1 the bochner-riesz kernel and simple estimates
10.2.2 the carleson-sj01in theorem
10.2.3 the kakeya maximal function
10.2.4 boundedness of a square function
10.2.5 the proof of lemma 10.2.5
exercises
10.3 kakeya maximal operators
10.3.1 maximal functions associated with a set of directions
10.3.2 the boundedness of σn on lp(r2)
10.3.3 the higher-dimensional kakeya maximal operator
exercises
10.4 fourier transform restriction and bochner-riesz means
10.4.1 necessary conditions for rp→q(sn-1) to hold
10.4.2 a restriction theorem for the fourier transform
10.4.3 applications to bochner-riesz multipliers
10.4a the full restriction theorem on r2
exercises
10.5 almost everywhere convergence of bochner-riesz means
10.5.1 a counterexample for the maximal bochner-riesz operator
10.5.2 almost everywhere summability of the bochner-riesz means
10.5.3 estimates for radial multipliers
exercises
11 time--frequency analysis and the carleson-hunt theorem
11.1 almost everywhere convergence of fourier integrals
11.1.1 preliminaries
11.1.2 discretization of the carleson operator
11.1.3 linearization of a maximal dyadic sum
11.1.4 iterative selection of sets of tiles with large mass and
energy
11.1.5 proof of the mass lemma 11.1.8
11.1.6 proof of energy lemma 11.1.9
11.1.7 proof of the basic estimate lemma 11.1.10
exercises
11.2 distributional estimates for the carleson operator
1.2.1 the main theorem and preliminary reductions
11.2.2 the proof of estimate (11.2.8)
11.2.3 the proof of estimate (11.2.9)
11.2.4 the proof of lemma 11.2.2
exercises
11.3 the maximal carleson operator and weighted estimates
exercises
glossary
references
index
6.1 riesz and bessel potentials, fractional integrals
6.1.1 riesz potentials
6.1.2 bessel potentials
exercises
6.2 sobolev spaces
6.2.1 definition and basic properties of general sobolev spaces
6.2.2 littlewood-paley characterization of inhomogeneous
sobolev spaces
6.2.3 littlewood-paley characterization of homogeneous
sobolev spaces
exercises
6.3 lipschitz spaces
6.3.1 introduction to lipschitz spaces
6.3.2 littlewood-paley characterization of homogeneous
lipschitz spaces
6.3.3 littlewood-paley characterization of inhomogeneous
lipschitz spaces
exercises
6.4 hardy spaces
6.4.1 definition of hardy spaces
6.4.2 quasinorm equivalence of several maximal functions
6.4.3 consequences of the characterizations of hardy spaces
6.4.4 vector-valued hp and its characterizations
6.4.5 singular integrals on hardy spaces
6.4.6 the littlewood-paley characterization of hardy spaces
exercises
6.5 besov-lipschitz and triebel-lizorkin spaces
6.5.1 introduction of function spaces
6.5.2 equivalence of definitions
exercises
6.6 atomic decomposition
6.6.1 the space of sequences fa,qp
6.6.2 the smooth atomic decomposition of fa,q
6.6.3 the nonsmooth atomic decomposition of fa,q
6.6.4 atomic decomposition of hardy spaces
exercises
6.7 singular integrals on function spaces
6.7.1 singular integrals on the hardy space ht
6.7.2 singular integrals on besov-lipschitz spaces
6.7.3 singular integrals on hp(rn)
6.7.4 a singular integral characterization ofh1 (rn)
exercises
7 bmo and carleson measures
7.1 functions of bounded mean oscillation
7.1.1 definition and basic properties of bmo
7.1.2 the john-nirenberg theorem
7.1.3 consequences of theorem 7.1.6
exercises
7.2 duality between h1 and bmo
exercises
7.3 nontangential maximal functions and carleson measures
7.3.1 definition and basic properties of carleson measures
7.3.2 bmo functions and carleson measures
exercises
7.4 the sharp maximal function
7.4.1 definition and basic properties of the sharp maximal function
7.4.2 a good lambda estimate for the sharp function
7.4.3 interpolation using bmo
7.4.4 estimates for singular integrals involving the sharp function
exercises
7.5 commutators of singular integrals with bmo functions
7.5.1 an orlicz-type maximal function
7.5.2 a pointwise estimate for the commutator
7.5.3 lp boundedness of the commutator
exercises z
8 singular integrals of nonconvolution type
8.1 general background and the role of bmo
8.1.1 standard kernels
8.1.2 operators associated with standard kernels
8.1.3 calder6n-zygmund operators acting on bounded functions
exercises
8.2 consequences of l2 boundedness
8.2.1 weaktype (1, i) and/_,p boundedness of singular integrals
8.2.2 boundedness of maximal singular integrals
8.2.3 h1 → l1 and l∞→bmo boundedness of singular integrals
exercises
8.3 the t(1) theorem
8.3.1 preliminaries and statement of the theorem
8.3.2 the proof of theorem 8.3.3
8.3.3 an application
exercises
8.4 paraproducts
8.4.1 introduction to paraproducts
8.4.2 l2 boundedness of paraproducts
8.4.3 fundamental properties of paraproducts
exercises
8.5 an almost orthogonality lemma and applications
8.5.1 the cotlar-knapp-stein almost orthogonality lemma
8.5.2 an application
8.5.3 almost orthogonality and the t(1) theorem
8.5.4 pseudodifferential operators
exercises
8.6 the cauchy integral of caldertn and the t(b) theorem
8.6.1 introduction of the cauchy integral operator along a lipschitz curve
8.6.2 resolution of the cauchy integral and reduction of its l2 boundedness to a quadratic estimate
8.6.3 a quadratic t(1) type theorem
8.6.4 a t(b) theorem and the l2 boundedness of the cauchy integral
exercises
8.7 square roots of elliptic operators
8.7.1 preliminaries and statement of the main result
8.7.2 estimates for elliptic operators on rn
8.7.3 reduction to a quadratic estimate
8.7.4 reduction to a carleson measure estimate
8.7.5 the t(b) argument
8.7.6 the proof of lemma 8.7.9
exercises
9 weighted inequalities
9.1 the at, condition
9.1.1 motivation for the at, condition
9.1.2 properties of at, weights
exercises
9.2 reverse htlder inequality and consequences
9.2.1 the reverse helder property of at, weights
9.2.2 consequences of the reverse holder property
exercises
9.3 the a∞ condition
9.3.1 the class of a∞ weights
9.3.2 characterizations of a∞ weights
exercises
9.4 weighted norm inequalities for singular integrals
9.4.1 a review of singular integrals
9.4.2 a good lambda estimate for singular integrals
9.4.3 consequences of the good lambda estimate
9.4.4 necessity of the at, condition
exercises
9.5 further properties of ap weights
9.5.1 factorization of weights
9.5.2 extrapolation from weighted estimates on a single d~0
9.5.3 weighted inequalities versus vector-valued inequalities
exercises
10 boundedness and convergence of fourier integrals
10.1 the multiplier problem for the ball
10.1.1 sprouting of triangles
10.1.2 the counterexample
exercises
10.2 bochner-riesz means and the carleson-sjolin theorem
10.2.1 the bochner-riesz kernel and simple estimates
10.2.2 the carleson-sj01in theorem
10.2.3 the kakeya maximal function
10.2.4 boundedness of a square function
10.2.5 the proof of lemma 10.2.5
exercises
10.3 kakeya maximal operators
10.3.1 maximal functions associated with a set of directions
10.3.2 the boundedness of σn on lp(r2)
10.3.3 the higher-dimensional kakeya maximal operator
exercises
10.4 fourier transform restriction and bochner-riesz means
10.4.1 necessary conditions for rp→q(sn-1) to hold
10.4.2 a restriction theorem for the fourier transform
10.4.3 applications to bochner-riesz multipliers
10.4a the full restriction theorem on r2
exercises
10.5 almost everywhere convergence of bochner-riesz means
10.5.1 a counterexample for the maximal bochner-riesz operator
10.5.2 almost everywhere summability of the bochner-riesz means
10.5.3 estimates for radial multipliers
exercises
11 time--frequency analysis and the carleson-hunt theorem
11.1 almost everywhere convergence of fourier integrals
11.1.1 preliminaries
11.1.2 discretization of the carleson operator
11.1.3 linearization of a maximal dyadic sum
11.1.4 iterative selection of sets of tiles with large mass and
energy
11.1.5 proof of the mass lemma 11.1.8
11.1.6 proof of energy lemma 11.1.9
11.1.7 proof of the basic estimate lemma 11.1.10
exercises
11.2 distributional estimates for the carleson operator
1.2.1 the main theorem and preliminary reductions
11.2.2 the proof of estimate (11.2.8)
11.2.3 the proof of estimate (11.2.9)
11.2.4 the proof of lemma 11.2.2
exercises
11.3 the maximal carleson operator and weighted estimates
exercises
glossary
references
index
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。
特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。
無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。