商品簡介
目次
相關商品
商品簡介
《高等學校教材·工程數學:矢量分析與場論(第4版)》在《工程數學--矢量分析與場論》(第三版)的基礎上修訂而成,根據該課程當前的教學要求及本書使用者的意見和建議,編者對全書進行了認真的審讀和修改,使內容更加完善,更加方便教學。全書內容包括矢量分析,場論,哈密頓算子,梯度、散度、旋度與調和量在正交曲線坐標系中的表示式。本書可作為高等學校工科類專業該課程的教材使用。
目次
第一章 矢量分析
第一節 矢性函數
1.矢性函數的概念
2.矢端曲線
3.矢性函數的極限和連續性
第二節 矢性函數的導數與微分
1.矢性函數的導數
2.導矢的幾何意義
3.矢性函數的微分
4.矢性函數的導數公式
5.導矢的物理意義
6.拉格朗日中值定理
第三節 矢性函數的積分
1.矢性函數的不定積分
2.矢性函數的定積分
習題1
第二章 場論
第一節 場
1.場的概念
2.數量場的等值面
3.矢量場的矢量線
4.平行平面場
習題2
第二節 數量場的方向導數和梯度
1.方向導數
2.梯度
習題3
第三節 矢量場的通量及散度
1.通量
2.散度
3.平面矢量場的通量與散度
習題4
第四節 矢量場的環量及旋度
1.環量
2.旋度
習題5
第五節 幾種重要的矢量場
1.有勢場
2.管形場
3.調和場
習題6
第三章 哈密頓算子
習題7
第四章 梯度、散度、旋度與調和量在正交曲線坐標系中的表示式
第一節 曲線坐標的概念
第二節 正交曲線坐標系中的弧微分
1.坐標曲線的弧微分
2.N般曲線的弧微分
3.在正交曲線坐標系中矢量e1,e2,e3與矢量i,j,k之間的關系
第三節 在正交曲線坐標系中梯度、散度、旋度與調和量的表示式
1.梯度的表示式
2.散度的表示式
3.調和量的表示式
4.旋度的表示式
5.梯度、散度、旋度與調和量在柱面坐標系和球面坐標系中的表示式
6.正交曲線坐標系中矢量場A的廣義雅可比矩陣
第四節 正交曲線坐標系中的勢函數和矢勢量
1.勢函數
2.全微分求積
3.保守場中的曲線積分
4.矢勢量
習題8
附錄 若干正交曲線坐標系
1.橢圓柱面坐標系
2.拋物柱面坐標系
3.雙極坐標系
4.長球面坐標系
5.扁球面坐標系
6.旋轉拋物面坐標系
7.圓環面坐標系
8.雙球面坐標系
9.橢球面坐標系
10.錐面坐標系
11.拋物面坐標系
習題9
部分習題參考答案
第一節 矢性函數
1.矢性函數的概念
2.矢端曲線
3.矢性函數的極限和連續性
第二節 矢性函數的導數與微分
1.矢性函數的導數
2.導矢的幾何意義
3.矢性函數的微分
4.矢性函數的導數公式
5.導矢的物理意義
6.拉格朗日中值定理
第三節 矢性函數的積分
1.矢性函數的不定積分
2.矢性函數的定積分
習題1
第二章 場論
第一節 場
1.場的概念
2.數量場的等值面
3.矢量場的矢量線
4.平行平面場
習題2
第二節 數量場的方向導數和梯度
1.方向導數
2.梯度
習題3
第三節 矢量場的通量及散度
1.通量
2.散度
3.平面矢量場的通量與散度
習題4
第四節 矢量場的環量及旋度
1.環量
2.旋度
習題5
第五節 幾種重要的矢量場
1.有勢場
2.管形場
3.調和場
習題6
第三章 哈密頓算子
習題7
第四章 梯度、散度、旋度與調和量在正交曲線坐標系中的表示式
第一節 曲線坐標的概念
第二節 正交曲線坐標系中的弧微分
1.坐標曲線的弧微分
2.N般曲線的弧微分
3.在正交曲線坐標系中矢量e1,e2,e3與矢量i,j,k之間的關系
第三節 在正交曲線坐標系中梯度、散度、旋度與調和量的表示式
1.梯度的表示式
2.散度的表示式
3.調和量的表示式
4.旋度的表示式
5.梯度、散度、旋度與調和量在柱面坐標系和球面坐標系中的表示式
6.正交曲線坐標系中矢量場A的廣義雅可比矩陣
第四節 正交曲線坐標系中的勢函數和矢勢量
1.勢函數
2.全微分求積
3.保守場中的曲線積分
4.矢勢量
習題8
附錄 若干正交曲線坐標系
1.橢圓柱面坐標系
2.拋物柱面坐標系
3.雙極坐標系
4.長球面坐標系
5.扁球面坐標系
6.旋轉拋物面坐標系
7.圓環面坐標系
8.雙球面坐標系
9.橢球面坐標系
10.錐面坐標系
11.拋物面坐標系
習題9
部分習題參考答案
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。
特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。
無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。