TOP
0
0
古典詩詞的女兒-葉嘉瑩
第三屆丘成桐中學數學獎獲獎論文集(簡體書)
滿額折

第三屆丘成桐中學數學獎獲獎論文集(簡體書)

商品資訊

人民幣定價:65 元
定價
:NT$ 390 元
優惠價
87339
海外經銷商無庫存,到貨日平均30天至45天
下單可得紅利積點:10 點
商品簡介
名人/編輯推薦
目次
書摘/試閱
相關商品

商品簡介

《第三屆丘成桐中學數學獎獲獎論文集》收錄了獲得第三屆丘成桐中學數學獎和丘成桐中學應用數學科學獎金獎、銀獎、鋼獎和優勝獎的論文。《第三屆丘成桐中學數學獎獲獎論文集》是丘成桐中學數學獎的推薦參考書,也可供廣大數學愛好者閱讀。.

名人/編輯推薦

《丘成桐中學數學獎推薦參考書:第3屆丘成桐中學數學獎獲獎論文集》介紹了丘成桐中學數學獎由國際著名華人數學家丘成桐先生與泰康人壽保險股份有限公司聯合設立。本獎項旨在激發和提升全球華人中學生對于數學研究的興趣和創新能力,培養和發現年輕的數學天才,增進海內外華人中學生的了解和友誼。為了提升中學生對應用數學科學的興趣及研究能力,從2010年開始增加了應用數學科學獎。第一、二屆丘成桐中學數學獎總決賽和頒獎典禮已分別于2008年10月、2009年12月在北京隆重舉行。第三屆丘成桐中學數學獎暨第一屆丘成桐應用數學科學獎頒獎儀式于2010年12月在北京舉行。

目次

丘成桐中學數學獎競賽手冊(S.—T.Yau High School Mathematics Competition Manual)
丘成桐中學數學獎開幕詞
歡迎辭
丘成桐中學數學獎組織構架
丘成桐中學應用數學科學獎組織構架
丘成桐中學數學獎
歷屆丘成桐中學數學獎成果
丘成桐教授
泰康人壽保險股份有限公司
美國坦普頓基金會
2010丘成桐中學數學獎各賽區入圍決賽隊伍
2010丘成桐中學應用數學科學獎各賽區入圍決賽隊伍
2010丘成桐中學數學獎獲獎名單
2010丘成桐中學應用數學科學獎獲獎名單
第三屆丘成桐中學數學獎工作日程安排
致謝
Welcome Letters
Organization of S.—T.Yau High School Mathematics Awards
Organization of S.—T.Yau High School Applied Mathematical Sciences Awards
S.—T.Yau High School Mathematics Awards
Achievement of the YHMA
Professor Shing—Tung Yau
Taikang Life Insurance Company
John Templeton Foundation
2010 S.—T.Yau High School Mathematics Awards Finalists
2010 S.—T.Yau High School Applied Mathematical Sciences Awards Finalists
Schedule for the Third S.—T.Yau High School Mathematics Awards
Acknowledgements
獲獎論文(Award—winning Research Reports)
A Proof on the Non—differentiability of Weierstrass Function in an Uncountable Dense Set Weierstrass函數在不可列的稠密集上不可導的一種證明
A Research on a Kind of Special Points Inside Convex對凸形內部一類特殊點的研究
From the Hinge Device to Curves of Linkages從畫正多邊形的鉸鏈到連桿軌跡
Extension,Enhancement and Analogue of the Vasiliev Inequality瓦西列夫不等式的推廣、加強與類似
A New Definition of Distance for Graphs圖上距離的一種新定義
On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points關于凸四邊形最小個數問題
The Distribution of the First Digit in Polynomials with Positive Integer Coefficients正整系數多項式的首位數字分布
Study on Inscribed Ellipse of Triangle三角形內切橢圓及其性質的研究
On Supersingular Elliptic Curves and Hypergeometric Functions關于超奇橢圓曲線和超幾何函數
Entries of Random Matrices隨機矩陣的元
The Study and Application of Velocity Transmission in a Queue變速隊伍中速度傳遞問題的研究及其實際應用
Understanding Flocking Dynamics in Natrue理解自然界中的群聚動力學
Actuarial Modeling of a Children's Protection Insurance兒童防護保險的精算模型
The Mathematical Model of the Oil Spilling in the Gulf of Mexico Based on the Extended Fay Formulas墨西哥灣原油泄漏事件在推廣Fay公式基礎上的建模

書摘/試閱



During the study,we have found quite a few interesting characteristics regarding inscribed ellipse in triangle,but we have also left some questions that we cannot answer.
The first one is about the relationship between the center and the foci of an inscribed ellipse.In Chapter Ⅱ we proved that for any given point O within the medial triangle of △ABC,there exists an ellipse centered at O inscribed in △ABC.Yet up till now we cannot determine the two foci directly by O,nor do we know much about the relationship of P,Q and O.
The second one is about the fact that the largest inscribed ellipse of △ABC is tangent to each side of △ABC at the midpoint.Reference provides an ingenious proof based on projective transformation,but we haven't found a direct proof based on merely Euclidean geometry.
The last one involves complex function.We know that the complex numbers corresponding to the two foci of the largest inscribed ellipse of △ABC are the two roots of the equation(w-z1)(w-z2)+(w-z2)(w-z3)+(w-z3)(w-z1)=0,or the two zeroes of the derivative of the complex function f(w)=(w-z1)(w-z2)(w-z3).So quite naturally we will ask whether there is any connection between these facts,or whether we can extend it to more points.Unfortunately,limited by our knowledge,we cannot delve further into this question now.
There is another thing that we need to mention.Though the whole study is original,a small part of the results has already been published and we were not aware of it.One of the judges,Professor Pan Jianzhong from Chinese Academy of Sciences,told us that he had found a paper On Inscribed and Escribed Ellipses of a Triangle(Keisuke MATSUMOTO,Kazunori FUJITA and Hiroo FUKAISHI,Mem.Fac.Educ.,Kagawa Univ.Ⅱ,59(2008),1-10),part of which coincides with our Lemma 1.So we hereby explain the case.

您曾經瀏覽過的商品

購物須知

大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。

特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。

無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:87 339
海外經銷商無庫存,到貨日平均30天至45天

暢銷榜

客服中心

收藏

會員專區