數學物理(簡體書)
商品資訊
系列名:普通高等教育“十三五”規劃教材
ISBN13:9787302551225
出版社:清華大學出版社(大陸)
作者:楊師傑
出版日:2020/06/01
裝訂/頁數:平裝/344頁
規格:24cm*17cm (高/寬)
版次:一版
商品簡介
數學物理以研究物理問題為目標的數學理論和數學方法。它探討物理現象的數學模型,即尋求物理現象的數學描述,並對模型已確立的物理問題研究其數學解法,然後根據解答來詮釋和預見物理現象,或者根據物理事實來修正原有模型。本書內容清新、深入,理論性強,目標物件為雙一流大學物理/數學系學生,也可供教學科研人員參考。
作者簡介
1991-1997年,湘潭大學物理系,2003年以來任北京師範大學物理系副教授、教授。主進《大學物理》、《數學物理方法》、《量子物理學》、《近代物理實驗》、《現代物理前沿專題》等課程。
名人/編輯推薦
本教材以全新的方式重新詮釋數學物理的基本原理,注重講解數學和物理的思想,生動有趣,雖然內容加深,但由於了弱化解題技巧,學起來更加輕鬆。
目次
第1章復變函數
1.1復數及幾何表示
1.復數和復數域
2.幾何表示
3.球極投影
4.代數基本定理
1.2函數定義
1.映射與區域
2.初等復變函數
1.3復變函數導數
1.極限與導數
2.柯西 黎曼條件
3.求導法則
1.4解析函數
1.解析函數定義
2.基本性質
1.5多值函數
1.支點和割線
2.黎曼面
3.復射影曲線
1.6復勢
1.平面靜電場
2.平面速度場
3.平面熱流場
第2章路徑積分
2.1復變函數積分
1.積分定義
2.基本性質
3.計算路徑積分
2.2柯西定理
1.單連通域
2.多連通域
3.原函數
2.3柯西積分公式
1.單連通域
2.多連通域
3.導數的積分表示
4.模定理
2.4多值函數積分
2.5橢圓函數
1.橢圓積分
2.積分取逆
3.雅可比橢圓函數
數學物理
目錄
第3章級數展開
3.1復函數項級數
1.級數收斂性
2.冪級數
3.2泰勒級數展開
1.泰勒定理
2.解析函數零點
3.3洛朗級數展開
1.雙邊冪級數
2.洛朗定理
3.4奇點分類
1.奇點
2.孤立奇點分類
3.支點分類
4.解析函數分類
3.5奇性平面場
1.源點與渦點
2.復勢
第4章留數積分
4.1留數定理
1.留數
2.留數計算
3.無窮遠點留數
4.2實函數積分
1.三種基本積分類型
2.實軸上有單極點
4.3特殊積分
1.多值函數積分
2.特殊回路積分
3.半無窮積分
4.“狗骨頭”積分
4.4級數求和
第5章解析函數
5.1解析延拓
5.2解析延拓函數
1.Γ函數
2.B函數
3.ψ函數
4.黎曼ζ函數
5.3對數積分
1.零點與極點
2.輻角原理
3.儒歇定理
5.4亞純函數分解
1.部分分式展開
2.米塔 列夫勒定理
5.5整函數乘積展開
1.整函數因式分解
2.無窮乘積收斂性
3.魏爾斯特拉斯乘積定理
第6章共形映射
6.1保角變換
1.調和方程不變性
2.導數的幾何意義
3.共形映射
6.2初等函數變換
1.冪函數變換
2.指數函數和對數函數變換
3.分式線性變換
6.3茹科夫斯基變換
1.基本性質
2.機翼模型
6.4多角形變換
6.5共形自映射
1.區域自映射
2.雙曲幾何
3.茹利亞集
4.曼德布羅集
第7章傅裡葉分析
7.1傅裡葉級數
1.正交三角函數集
2.狄裡希利定理
3.指數形式傅裡葉級數
4.三維傅裡葉級數
7.2傅裡葉變換
1.傅裡葉積分
2.基本性質
3.三維傅裡葉變換
7.3卷積定理
1.卷積函數
2.相關函數
7.4泊松求和公式
第8章函數變換
8.1拉普拉斯變換
1.可積問題
2.基本性質
8.2拉普拉斯逆變換
1.分解有理式法
2.卷積定理法
3.黎曼 梅林反演法
8.3應用舉例
1.解微分方程
2.解積分方程
3.實函數積分
4.計算級數和
8.4z變換
1.z變換定義
2.基本性質
3.反演變換
4.應用舉例
5.與拉普拉斯變換的關係
第9章微分方程通解
9.1常系數常微分方程
1.齊次方程
2.非齊次方程
3.歐拉型方程
9.2變系數常微分方程
1.常點
2.正規奇點
3.方程第二個解
4.非齊次方程特解
9.3常系數偏微分方程
1.齊次偏微分方程
2.非齊次偏微分方程
9.4非線性方程
1.波的色散
2.孤波解
3.怪波解
4.橢圓方程解
5.圓周擺
第10章方程與定解
10.1數學物理方程
1.弦的橫向振動
2.桿的縱向振動
3.擴散方程
4.熱傳導方程
5.聲波方程
6.其他物理方程
10.2定解問題
1.定解條件
2.銜接條件
10.3達朗貝爾公式
1.無限長弦的波動方程
2.端點反射
10.4偏微分方程分類
1.特徵方程
2.偏微分方程標準型
10.5正交曲線坐標系
1.坐標變換
2.三維拉普拉斯算符
3.高維拉普拉斯算符
第11章分離變量法
11.1齊次邊界問題
1.齊次微分方程
2.非齊次微分方程
3.矩形域問題
11.2非齊次邊界問題
11.3周期邊界問題
1.齊次方程(拉普拉斯方程)
2.非齊次方程(泊松方程)
11.4銜接問題
第12章積分變換法
12.1廣義函數
1.δ函數
2.基本性質
3.階躍函數
12.2傅裡葉變換法
1.無限空間問題
2.半無限空間問題
12.3拉普拉斯變換法
第13章球諧函數
13.1勒讓德方程
1.球坐標系
2.本征值問題
3.基本性質
4.廣義傅裡葉級數
5.母函數
6.遞推關係
13.2連帶勒讓德方程
1.連帶勒讓德函數
2.基本性質
3.廣義傅裡葉級數
13.3一般球面函數
1.球面函數方程
2.廣義傅裡葉級數
3.加法公式
第14章本征函數論
14.1線性空間基礎
1.度量空間
2.完備性
3.內積空間
14.2希爾伯特空間
1.貝塞爾不等式
2.完備性關係
3.函數空間
4.連續基
14.3斯圖姆 劉維爾系統
1.自伴算符
2.斯圖姆 劉維爾本征方程
14.4本征值理論
1.基本性質
2.廣義傅裡葉級數
3.幾種本征值問題
14.5經典正交多項式
1.正交多項式
2.正交多項式分類
3.遞推關係
4.常見正交多項式
5.母函數
6.按正交多項式展開
第15章特殊函數
15.1貝塞爾函數
1.圓柱坐標系
2.三類貝塞爾函數
3.基本性質
4.本征值問題
5.廣義傅裡葉級數
6.母函數
15.2虛宗量貝塞爾函數
15.3球貝塞爾函數
1.球坐標系亥姆霍茲方程
2.基本性質
3.本征值問題
4.廣義傅裡葉級數
5.平面波展開
6.變形貝塞爾方程
15.4特殊函數分類
1.富克斯方程
2.正規奇點
3.超幾何函數
4.特殊函數類
15.5合流超幾何函數
第16章格林函數
16.1格林函數定義
1.形式理論
2.二階線性微分方程
3.斯圖姆 劉維爾算符
16.2位勢方程
1.基本解
2.電像法
3.本征函數展開法
16.3應用舉例
16.4發展方程
1.含時問題格林函數
2.本征函數展開法
3.拉普拉斯變換法
16.5微擾展開
1.形式解
2.級數展開
第17章變分法
17.1泛函與變分
1.速降問題
2.泛函變分
17.2泛函極值
1.變分法基本引理
2.歐拉 拉格朗日方程
3.多元函數
4.約束系統
5.可變端點
17.3物理學之數學原理
1.費馬原理
2.小作用量原理
3.對稱性與守恒定理
4.哈密頓力學
17.4微分方程定解問題
1.本征值問題
2.非齊次方程邊值問題
17.5瑞利 裡茲近似
附錄
參考文獻
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。
特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。
無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。