商品簡介
作者簡介
序
目次
書摘/試閱
相關商品
商品簡介
垂直共振腔面射型雷射的發展與量產將近40年,在光通訊與光資訊領域已經成為不可或缺的主動光源最佳解決方案,並在近10年陸續應用在各式各樣的感測器相關用途,因此相關產業也開始進入高速成長期。
本書主要針對大專院校及研究所具備物理、電子電機、材料、半導體與光電科技相關背景的學生以及相關產業研發人員,提供一個進階課程所需的參考書。全書共分為七章,第一章將介紹面射型雷射發展歷程,第二章主要說明半導體雷射操作原理接續第三章針對面射型雷射結構設計考量與第四章動態操作等特性分析,第五章介紹目前最廣泛應用的砷化鎵系列材料面射型雷射製程技術,第六章探討長波長面射型雷射製作技術以及在光通訊、光資訊以及感測技術上的應用,第七章介紹採用氮化鎵系列材料製作短波長面射型雷射之最新進展以及相關應用及發展趨勢。
臺灣在面射型雷射技術研發已經形成涵蓋上中下游的磊晶成長、晶粒製程與封裝模組的完整產業鏈,希望讀者能藉由本書了解相關產業發展概況並激發深入研究的動機與興趣。
本書主要針對大專院校及研究所具備物理、電子電機、材料、半導體與光電科技相關背景的學生以及相關產業研發人員,提供一個進階課程所需的參考書。全書共分為七章,第一章將介紹面射型雷射發展歷程,第二章主要說明半導體雷射操作原理接續第三章針對面射型雷射結構設計考量與第四章動態操作等特性分析,第五章介紹目前最廣泛應用的砷化鎵系列材料面射型雷射製程技術,第六章探討長波長面射型雷射製作技術以及在光通訊、光資訊以及感測技術上的應用,第七章介紹採用氮化鎵系列材料製作短波長面射型雷射之最新進展以及相關應用及發展趨勢。
臺灣在面射型雷射技術研發已經形成涵蓋上中下游的磊晶成長、晶粒製程與封裝模組的完整產業鏈,希望讀者能藉由本書了解相關產業發展概況並激發深入研究的動機與興趣。
作者簡介
盧廷昌
現職
國立陽明交通大學光電系 講座教授
穩懋半導體 首席科學家
榮譽
OPTICA Fellow、SPIE Fellow、全球前2%頂尖科學家、科技部傑出研究獎、傑出電機工程教授獎
尤信介
現職
國立陽明交通大學照明與能源光電研究所 助理教授
國立成功大學智慧半導體及永續製造學院暨光電系 兼任助理教授
榮譽
國立陽明交通大學110學年度優良教學獎,108、109、110學年度績優導師
現職
國立陽明交通大學光電系 講座教授
穩懋半導體 首席科學家
榮譽
OPTICA Fellow、SPIE Fellow、全球前2%頂尖科學家、科技部傑出研究獎、傑出電機工程教授獎
尤信介
現職
國立陽明交通大學照明與能源光電研究所 助理教授
國立成功大學智慧半導體及永續製造學院暨光電系 兼任助理教授
榮譽
國立陽明交通大學110學年度優良教學獎,108、109、110學年度績優導師
序
第二版序
從2019本書第一版付梓到現在這個時刻,全球因為Covid-19新冠肺炎的嚴重影響,從大規模城市到國家的封鎖,從個人健康威脅與疫苗注射到許多人的求學、就業與生活都必須被迫改變,讓這個世界變得很不一樣了。在此期間,數位科技扮演了人們為了應付此突如其來的大變化一個相當重要的角色,我們開始習慣於網上購物、線上學習與視訊會議,各式各樣的機器人、無人機與自動駕駛的技術逐漸應用到我們生活周遭,最近OpenAI展示的生成式AI更開啟了人工智慧的新一波榮景;很慶幸VCSEL的優異特性與持續的發展和演進,讓其應用到前述的許多場景,尤其是近年來的資料中心的光連結,5G、6G通訊以及3D感測與自動駕駛對VCSEL的需求越來越大,也因此促成作者能夠在此刻再版此書。在此版本中更正了這幾年來所發現而累積到目前的錯誤,並在新版中加上VCSEL一些新的進展,希望此版本能提供學生、研究學者、老師與業界人員一本深入淺出介紹VCSEL各方面技術的書籍,也希望讀者能不吝回饋與指教本書仍可能存在的謬誤。
最後,非常感謝五南出版社對此書的再版,作者盧廷昌要感謝國立陽明交通大學光電系與穩懋半導體的支持,以及要深深感謝這位不但持續支持全心投入在工作、教學、研究還要寫書而無暇顧家的我、而且仍不斷給我鼓勵往前衝刺的妻子―詠梅。作者尤信介要感謝加州大學洛杉磯分校工學院副院長暨電機系諾斯洛普講座劉佳明教授在出版專書經驗分享與教學研究工作上的鼓勵。
盧廷昌
尤信介
2023年於新竹陽明交大
序
自從日本東京工業大學伊賀健一教授在1979年首次成功製作出垂直共振腔面射型雷射(vertical cavity surface emitting lasers, VCSELs)以來,這個全新結構且具備眾多優異操作特性的雷射元件迅速成為各大光電產業及研究機構競相投入開發的新興領域。面射型雷射也在1990年代中期成功商品化,早期主要應用於短距離光纖通訊收發模組主動光源,也成為推動90年代末期進入網路資訊化社會的主要原動力之一。由於發展過於迅速,且電子商務剛處於萌芽階段,對頻寬需求較大的數位內容相關產業尚未建立,入口網站獲利模式也還不夠明確,因此在21世紀初出現網路泡沫化危機,對寬頻網路的需求一度停滯,並且有許多已經佈建完成的光纖網路也處於閒置狀態未曾被啟用,連帶影響光收發模組需求導致許多原先從事面射型雷射研發生產製造的廠商相繼終止投資,並面臨部門裁撤甚至被購併的危機。此時開始有廠商將面射型雷射應用於感測器相關用途,開啟另一項潛在市場規模更大的應用。
在2007年起由於智慧型手機開始逐漸普及,社群網站與數位內容影音串流等對高速網路頻寬需求迫切的應用陸續浮現,同時各國網路服務供應商也積極佈建光纖到府等最後一哩(last mile)網路接取基礎建設,因此光通訊模組市場再度活絡,且需求較網路泡沫化之前的高峰期還要可觀,不僅是網路服務需求,數據中心與數位裝置高速傳輸介面也逐漸需要仰賴面射型雷射作為具成本效益且低功耗、高性能的傳輸模組主動光源。雖然在2014年就開始有智慧型手機裝設面射型雷射作為相機對焦輔助光源,但是在2017年,全球智慧型手機獲利龍頭廠商首次在旗艦機款搭載具備多顆面射型雷射主動光源的3D景深辨識系統,瞬間將面射型雷射的市場需求推升到前所未有的高度,隨著主要手機製造商的跟進,目前面射型雷射在感測器相關用途的需求已經超越光通訊模組,並且隨著第5代行動通訊(5G)網路的佈建,人工智慧與物聯網AIoT、自駕車技術以及擴增/虛擬實境AR/VR的蓬勃發展,對VCSELs的需求總數還有可能持續攀升。
臺灣學術研究單位與光電產業很早就投入面射型雷射技術研發,在過去20幾年來已經累積相當豐碩的研究成果與量產經驗。目前在面射型雷射領域已經建立完整的上游磊晶成長、中游晶粒製造以及下游封裝模組的產業鏈,所欠缺的部分環節在於最上游的研發人才培育以及最後段的產品出海口系統應用端,這也是附加價值最大的一環,因此為了提升面射型雷射產業整體競爭力,有必要吸引更多優秀人才投入先進技術研究以及產品應用開發。本書主要目的即在於提供光電相關領域研發人員,以及具備基礎知識的學生及產業分析、產品設計人員一個深入了解面射型雷射技術發展的管道,希望有助於提升並強化相關產業的競爭力。
本書主要針對大專院校及研究所具備物理、電子電機、材料、半導體與光電科技相關背景的學生以及相關產業研發人員,提供一個進階課程所需的參考書籍,同時部分章節中附以範例與章節習題,除了可以幫助讀者在研讀時易於了解章節的重點外,亦可當作教授大四及研究所以上的教科書使用。全書共分為七章,第一章介紹面射型雷射發展歷程,第二章簡要說明半導體雷射的基本操作原理,以最早被發明的邊射型雷射(edge emitting laser, EEL)為基礎,先介紹p-n雙異質接面的操作特性;接著再介紹半導體雷射主動層中電光轉換的部分,也就是增益介質將光放大的特性,之後則討論雷射振盪的條件以及介紹半導體雷射的速率方程式,引入載子生命期、光子生命期、自發性輻射因子等參數,列出載子密度與光子密度的速率方程式來推導半導體雷射的閾值條件與輸出特性。第三章針對面射型雷射結構設計考量,主要於介紹垂直共振腔面射型雷射的原理、設計、結構與發展現況,其中包含面射型雷射中重要的高反射率反射鏡DBR(distributed Bragg reflector)的設計與適當的材料選擇,此外對於垂直共振腔面射型雷射的設計概念、操作特性與溫度效應做詳細的說明,並介紹光學微共振腔的效應。第四章中,我們將運用載子濃度與光子密度的速率方程式,來了解雷射操作特性隨時間變化的動態行為。依受到外部調制的大小區分為大信號與小信號分析;在小信號分析裡,我們可以獲取半導體雷射的各種輸出特性的變化量對應於輸入參數的變化量,我們將介紹半導體雷射系統因為載子濃度與光子密度的速率方程式互相耦合所產生的共振現象,並推導其在共振時的振盪頻率即弛豫頻率以及其所對應的截止頻率或調制響應的頻寬,接著再介紹當半導體雷射操作在大電流或是高雷射輸出功率時所產生的非線性增益飽和的現象,以及其對半導體雷射的弛豫頻率與調制響應頻寬的影響,然後再討論載子濃度與光子密度在小信號近似下隨時間變化的暫態解。在大信號分析的介紹中,會先討論半導體雷射在瞬間輸入電流導通時產生延遲輸出的原因以及眼圖的概念。而在大信號分析的介紹中,會衍伸出所謂的雷射輸出信號啁啾的現象,為了說明這個現象,我們將介紹所謂的線寬增強因子在半導體雷射中產生的原因與影響,接著就會推導出半導體雷射光在頻譜量測中得到的發光線寬,以了解線寬增強因子在半導體雷射中所扮演的重要角色。最後,將介紹相對強度雜訊的起源與影響,以及和半導體雷射中弛豫振盪的關係。第五章著重於目前最廣泛應用的砷化鎵系列材料面射型雷射製程技術,特別是選擇性氧化面射型雷射製程技術介紹;第六章探討長波長面射型雷射製作技術以及在光通訊、光資訊以及感測技術上的應用;最後第七章主要介紹短波長的藍綠光、紫光和紫外光氮化鎵面射型雷射發展。寬能隙藍光氮化鎵材料及其相關的光電元件發展在最近十年內一直是熱門的研究議題,由於氮化鎵材料並無晶格匹配的基板,因此在磊晶成長高品質氮化鎵薄膜始終面臨了高缺陷密度的問題,加上高濃度的p型氮化鎵製作不易,使得氮化鎵相關的光電元件發展相較於一般三五族材料緩慢許多。現今氮化鎵藍光邊射型雷射已發展相當成熟,並且已有商品化的出現,然而相較於藍光邊射型雷射而言,藍光VCSEL的發展卻非常緩慢,其中重要的關鍵在於缺少晶格匹配的基板與高反射率的氮化鎵DBR反射鏡製作困難,我們將在本章介紹藍紫光VCSEL的技術發展。
本書的部分內容源自作者之一盧廷昌由五南圖書於2008年出版的《半導體雷射導論》以及2010年出版的《半導體雷射技術》。之後,五南圖書編輯部常與我聯繫,希望我能就其他種類的雷射編寫教科書或專業文獻,只是礙於繁重的教學與研究工作,一直無法答應,直到這兩年VCSEL的元件需求迅速攀高,加上作者之一的尤信介欣然同意加入撰寫此書的行列,才能應五南圖書王正華主編的邀請將編撰本書的具體行動付諸實現。
我們想感謝交通大學光電系和光電學院提供良好的環境,讓作者得以在不受打擾的氛圍中埋首寫作!本書的完成經歷了許多人的參與協助,特別感謝五南圖書的編輯部門能迅速將我們的初稿編輯成冊。作者之一盧廷昌要感謝指導教授交大光電系的王興宗老師帶領進入半導體雷射的領域,並持續鼓勵與支持其研究工作,同時也要感謝交大光電系的同仁們的支持與協助,而博士班的學生祖齊、振庭在藍光面射型雷射、高速操作分析等內容的提供,為本書增添不少可讀性。作者之一的尤信介要感謝在工研院光電所實習期間參與經濟部科專計畫與國合計畫VCSEL技術研發團隊的指導與協助,包含郭浩中教授、張慶安博士、宋嘉斌博士、楊泓斌博士、祁錦雲博士、林國瑞博士、邱舒偉博士、王智祥博士、吳易座博士、江文章博士、黃俊元博士、賴芳儀博士、張亞銜博士、李晉東博士、陳奕良博士以及俄羅斯科學院Ioffe Institute Dr. A. R. Kovsh, Dr. N. A. Maleev, Dr. S. S. Mikhrin, Dr. D. A. Livshits, Prof. M. Kokorev等,以及成功大學蘇炎坤教授、許渭州教授與張守進教授和在美國進行科技部補助博士後研究計畫期間UCLA電機系王康隆院士與史丹佛大學電機系Prof. J. S. Harris及實驗室團隊成員的諸多協助。
最後,作者盧廷昌要深深感謝在教學、研究還要寫書的過程中不斷給我鼓勵和支持的妻子詠梅。
盧 廷 昌
國立交通大學光電系特聘教授兼系主任
尤 信 介
國立交通大學照明與能源光電研究所助理教授
從2019本書第一版付梓到現在這個時刻,全球因為Covid-19新冠肺炎的嚴重影響,從大規模城市到國家的封鎖,從個人健康威脅與疫苗注射到許多人的求學、就業與生活都必須被迫改變,讓這個世界變得很不一樣了。在此期間,數位科技扮演了人們為了應付此突如其來的大變化一個相當重要的角色,我們開始習慣於網上購物、線上學習與視訊會議,各式各樣的機器人、無人機與自動駕駛的技術逐漸應用到我們生活周遭,最近OpenAI展示的生成式AI更開啟了人工智慧的新一波榮景;很慶幸VCSEL的優異特性與持續的發展和演進,讓其應用到前述的許多場景,尤其是近年來的資料中心的光連結,5G、6G通訊以及3D感測與自動駕駛對VCSEL的需求越來越大,也因此促成作者能夠在此刻再版此書。在此版本中更正了這幾年來所發現而累積到目前的錯誤,並在新版中加上VCSEL一些新的進展,希望此版本能提供學生、研究學者、老師與業界人員一本深入淺出介紹VCSEL各方面技術的書籍,也希望讀者能不吝回饋與指教本書仍可能存在的謬誤。
最後,非常感謝五南出版社對此書的再版,作者盧廷昌要感謝國立陽明交通大學光電系與穩懋半導體的支持,以及要深深感謝這位不但持續支持全心投入在工作、教學、研究還要寫書而無暇顧家的我、而且仍不斷給我鼓勵往前衝刺的妻子―詠梅。作者尤信介要感謝加州大學洛杉磯分校工學院副院長暨電機系諾斯洛普講座劉佳明教授在出版專書經驗分享與教學研究工作上的鼓勵。
盧廷昌
尤信介
2023年於新竹陽明交大
序
自從日本東京工業大學伊賀健一教授在1979年首次成功製作出垂直共振腔面射型雷射(vertical cavity surface emitting lasers, VCSELs)以來,這個全新結構且具備眾多優異操作特性的雷射元件迅速成為各大光電產業及研究機構競相投入開發的新興領域。面射型雷射也在1990年代中期成功商品化,早期主要應用於短距離光纖通訊收發模組主動光源,也成為推動90年代末期進入網路資訊化社會的主要原動力之一。由於發展過於迅速,且電子商務剛處於萌芽階段,對頻寬需求較大的數位內容相關產業尚未建立,入口網站獲利模式也還不夠明確,因此在21世紀初出現網路泡沫化危機,對寬頻網路的需求一度停滯,並且有許多已經佈建完成的光纖網路也處於閒置狀態未曾被啟用,連帶影響光收發模組需求導致許多原先從事面射型雷射研發生產製造的廠商相繼終止投資,並面臨部門裁撤甚至被購併的危機。此時開始有廠商將面射型雷射應用於感測器相關用途,開啟另一項潛在市場規模更大的應用。
在2007年起由於智慧型手機開始逐漸普及,社群網站與數位內容影音串流等對高速網路頻寬需求迫切的應用陸續浮現,同時各國網路服務供應商也積極佈建光纖到府等最後一哩(last mile)網路接取基礎建設,因此光通訊模組市場再度活絡,且需求較網路泡沫化之前的高峰期還要可觀,不僅是網路服務需求,數據中心與數位裝置高速傳輸介面也逐漸需要仰賴面射型雷射作為具成本效益且低功耗、高性能的傳輸模組主動光源。雖然在2014年就開始有智慧型手機裝設面射型雷射作為相機對焦輔助光源,但是在2017年,全球智慧型手機獲利龍頭廠商首次在旗艦機款搭載具備多顆面射型雷射主動光源的3D景深辨識系統,瞬間將面射型雷射的市場需求推升到前所未有的高度,隨著主要手機製造商的跟進,目前面射型雷射在感測器相關用途的需求已經超越光通訊模組,並且隨著第5代行動通訊(5G)網路的佈建,人工智慧與物聯網AIoT、自駕車技術以及擴增/虛擬實境AR/VR的蓬勃發展,對VCSELs的需求總數還有可能持續攀升。
臺灣學術研究單位與光電產業很早就投入面射型雷射技術研發,在過去20幾年來已經累積相當豐碩的研究成果與量產經驗。目前在面射型雷射領域已經建立完整的上游磊晶成長、中游晶粒製造以及下游封裝模組的產業鏈,所欠缺的部分環節在於最上游的研發人才培育以及最後段的產品出海口系統應用端,這也是附加價值最大的一環,因此為了提升面射型雷射產業整體競爭力,有必要吸引更多優秀人才投入先進技術研究以及產品應用開發。本書主要目的即在於提供光電相關領域研發人員,以及具備基礎知識的學生及產業分析、產品設計人員一個深入了解面射型雷射技術發展的管道,希望有助於提升並強化相關產業的競爭力。
本書主要針對大專院校及研究所具備物理、電子電機、材料、半導體與光電科技相關背景的學生以及相關產業研發人員,提供一個進階課程所需的參考書籍,同時部分章節中附以範例與章節習題,除了可以幫助讀者在研讀時易於了解章節的重點外,亦可當作教授大四及研究所以上的教科書使用。全書共分為七章,第一章介紹面射型雷射發展歷程,第二章簡要說明半導體雷射的基本操作原理,以最早被發明的邊射型雷射(edge emitting laser, EEL)為基礎,先介紹p-n雙異質接面的操作特性;接著再介紹半導體雷射主動層中電光轉換的部分,也就是增益介質將光放大的特性,之後則討論雷射振盪的條件以及介紹半導體雷射的速率方程式,引入載子生命期、光子生命期、自發性輻射因子等參數,列出載子密度與光子密度的速率方程式來推導半導體雷射的閾值條件與輸出特性。第三章針對面射型雷射結構設計考量,主要於介紹垂直共振腔面射型雷射的原理、設計、結構與發展現況,其中包含面射型雷射中重要的高反射率反射鏡DBR(distributed Bragg reflector)的設計與適當的材料選擇,此外對於垂直共振腔面射型雷射的設計概念、操作特性與溫度效應做詳細的說明,並介紹光學微共振腔的效應。第四章中,我們將運用載子濃度與光子密度的速率方程式,來了解雷射操作特性隨時間變化的動態行為。依受到外部調制的大小區分為大信號與小信號分析;在小信號分析裡,我們可以獲取半導體雷射的各種輸出特性的變化量對應於輸入參數的變化量,我們將介紹半導體雷射系統因為載子濃度與光子密度的速率方程式互相耦合所產生的共振現象,並推導其在共振時的振盪頻率即弛豫頻率以及其所對應的截止頻率或調制響應的頻寬,接著再介紹當半導體雷射操作在大電流或是高雷射輸出功率時所產生的非線性增益飽和的現象,以及其對半導體雷射的弛豫頻率與調制響應頻寬的影響,然後再討論載子濃度與光子密度在小信號近似下隨時間變化的暫態解。在大信號分析的介紹中,會先討論半導體雷射在瞬間輸入電流導通時產生延遲輸出的原因以及眼圖的概念。而在大信號分析的介紹中,會衍伸出所謂的雷射輸出信號啁啾的現象,為了說明這個現象,我們將介紹所謂的線寬增強因子在半導體雷射中產生的原因與影響,接著就會推導出半導體雷射光在頻譜量測中得到的發光線寬,以了解線寬增強因子在半導體雷射中所扮演的重要角色。最後,將介紹相對強度雜訊的起源與影響,以及和半導體雷射中弛豫振盪的關係。第五章著重於目前最廣泛應用的砷化鎵系列材料面射型雷射製程技術,特別是選擇性氧化面射型雷射製程技術介紹;第六章探討長波長面射型雷射製作技術以及在光通訊、光資訊以及感測技術上的應用;最後第七章主要介紹短波長的藍綠光、紫光和紫外光氮化鎵面射型雷射發展。寬能隙藍光氮化鎵材料及其相關的光電元件發展在最近十年內一直是熱門的研究議題,由於氮化鎵材料並無晶格匹配的基板,因此在磊晶成長高品質氮化鎵薄膜始終面臨了高缺陷密度的問題,加上高濃度的p型氮化鎵製作不易,使得氮化鎵相關的光電元件發展相較於一般三五族材料緩慢許多。現今氮化鎵藍光邊射型雷射已發展相當成熟,並且已有商品化的出現,然而相較於藍光邊射型雷射而言,藍光VCSEL的發展卻非常緩慢,其中重要的關鍵在於缺少晶格匹配的基板與高反射率的氮化鎵DBR反射鏡製作困難,我們將在本章介紹藍紫光VCSEL的技術發展。
本書的部分內容源自作者之一盧廷昌由五南圖書於2008年出版的《半導體雷射導論》以及2010年出版的《半導體雷射技術》。之後,五南圖書編輯部常與我聯繫,希望我能就其他種類的雷射編寫教科書或專業文獻,只是礙於繁重的教學與研究工作,一直無法答應,直到這兩年VCSEL的元件需求迅速攀高,加上作者之一的尤信介欣然同意加入撰寫此書的行列,才能應五南圖書王正華主編的邀請將編撰本書的具體行動付諸實現。
我們想感謝交通大學光電系和光電學院提供良好的環境,讓作者得以在不受打擾的氛圍中埋首寫作!本書的完成經歷了許多人的參與協助,特別感謝五南圖書的編輯部門能迅速將我們的初稿編輯成冊。作者之一盧廷昌要感謝指導教授交大光電系的王興宗老師帶領進入半導體雷射的領域,並持續鼓勵與支持其研究工作,同時也要感謝交大光電系的同仁們的支持與協助,而博士班的學生祖齊、振庭在藍光面射型雷射、高速操作分析等內容的提供,為本書增添不少可讀性。作者之一的尤信介要感謝在工研院光電所實習期間參與經濟部科專計畫與國合計畫VCSEL技術研發團隊的指導與協助,包含郭浩中教授、張慶安博士、宋嘉斌博士、楊泓斌博士、祁錦雲博士、林國瑞博士、邱舒偉博士、王智祥博士、吳易座博士、江文章博士、黃俊元博士、賴芳儀博士、張亞銜博士、李晉東博士、陳奕良博士以及俄羅斯科學院Ioffe Institute Dr. A. R. Kovsh, Dr. N. A. Maleev, Dr. S. S. Mikhrin, Dr. D. A. Livshits, Prof. M. Kokorev等,以及成功大學蘇炎坤教授、許渭州教授與張守進教授和在美國進行科技部補助博士後研究計畫期間UCLA電機系王康隆院士與史丹佛大學電機系Prof. J. S. Harris及實驗室團隊成員的諸多協助。
最後,作者盧廷昌要深深感謝在教學、研究還要寫書的過程中不斷給我鼓勵和支持的妻子詠梅。
盧 廷 昌
國立交通大學光電系特聘教授兼系主任
尤 信 介
國立交通大學照明與能源光電研究所助理教授
目次
目 錄
第一章 垂直共振腔面射型雷射的發展
1.1 雷射發展歷史
1.2 面射型雷射發展歷程
1.3 面射型雷射之優點
1.4 面射型雷射初期研發進展
1.5 可見光面射型雷射
1.6 長波長面射型雷射
1.7 多波長與可調波長面射型雷射
1.8 短波長面射型雷射
參考資料
第二章 半導體雷射基本操作原理與結構
2.1 雙異質接面
2.2 半導體光增益與放大特性
2.3 半導體雷射震盪條件
2.3.1 振幅條件
2.3.2 相位條件
2.4 速率方程式與雷射輸出特性
本章習題
參考資料
第三章 VCSEL基本操作原理
3.1 VCSEL與EEL的比較
3.2 布拉格反射鏡
3.2.1 傳遞矩陣
3.2.2 穿透深度
3.2.3 布拉格反射鏡結構設計
3.3 垂直共振腔面射型雷射之特性
3.4 溫度效應
3.5 微共振腔效應
3.6 載子與光學侷限結構
本章習題
參考資料
第四章 高速VCSEL操作動態特性
4.1 小信號響應
4.1.1 弛豫頻率與截止頻率
4.1.2 非線性增益飽和效應
4.1.3 高速雷射調制之設計
4.1.4 小信號速率方程式之暫態解
4.2 大信號響應
4.2.1 導通延遲時間
4.2.2 大信號調制之數值解
4.3 線寬增強因子與啁啾
4.3.1 頻率啁啾與頻率調制
4.3.2 半導體雷射之發光線寬
4.4 相對強度雜訊
本章習題
參考資料
第五章 GaAs-based VCSEL製作技術
5.1 電流侷限方法
5.1.1 增益波導
5.1.2 折射率波導
5.1.3 離子佈植法
5.1.4 氧化侷限法
5.2 面射型雷射製程技術
5.2.1 蝕刻
5.2.2 選擇性氧化
5.2.3 金屬電極製作
本章習題
參考資料
第六章 紅外光VCSEL技術與應用
6.1 紅外光VCSEL元件
6.1.1 InP異質接面/量子井面射型雷射
6.1.2 InGaAs量子井面射型雷射
6.1.3 InGaAsN量子井面射型雷射
6.1.4 InAs量子點面射型雷射
6.2 紅外光VCSEL應用
6.2.1 光通訊應用與高頻操作
6.2.2 光資訊應用與單模操作
6.2.3 感測器應用
6.3 紅外光VCSEL的近期發展
6.3.1 面射型雷射陣列
6.3.2 多接面面射型雷射
6.3.3 下發光面射型雷射
6.3.4 可定址面射型雷射陣列
本章習題
參考資料
第七章 藍紫光VCSEL技術與應用
7.1 藍紫光VCSEL用之反射鏡
7.2 光激發式藍紫光VCSEL
7.3 電激發式藍紫光VCSEL
7.4 藍紫光VCSEL的近期發展
7.4.1 混合式氮化鎵VCSEL
7.4.2 介電質氮化鎵VCSEL
7.4.3 HCG氮化鎵VCSEL
參考資料
第一章 垂直共振腔面射型雷射的發展
1.1 雷射發展歷史
1.2 面射型雷射發展歷程
1.3 面射型雷射之優點
1.4 面射型雷射初期研發進展
1.5 可見光面射型雷射
1.6 長波長面射型雷射
1.7 多波長與可調波長面射型雷射
1.8 短波長面射型雷射
參考資料
第二章 半導體雷射基本操作原理與結構
2.1 雙異質接面
2.2 半導體光增益與放大特性
2.3 半導體雷射震盪條件
2.3.1 振幅條件
2.3.2 相位條件
2.4 速率方程式與雷射輸出特性
本章習題
參考資料
第三章 VCSEL基本操作原理
3.1 VCSEL與EEL的比較
3.2 布拉格反射鏡
3.2.1 傳遞矩陣
3.2.2 穿透深度
3.2.3 布拉格反射鏡結構設計
3.3 垂直共振腔面射型雷射之特性
3.4 溫度效應
3.5 微共振腔效應
3.6 載子與光學侷限結構
本章習題
參考資料
第四章 高速VCSEL操作動態特性
4.1 小信號響應
4.1.1 弛豫頻率與截止頻率
4.1.2 非線性增益飽和效應
4.1.3 高速雷射調制之設計
4.1.4 小信號速率方程式之暫態解
4.2 大信號響應
4.2.1 導通延遲時間
4.2.2 大信號調制之數值解
4.3 線寬增強因子與啁啾
4.3.1 頻率啁啾與頻率調制
4.3.2 半導體雷射之發光線寬
4.4 相對強度雜訊
本章習題
參考資料
第五章 GaAs-based VCSEL製作技術
5.1 電流侷限方法
5.1.1 增益波導
5.1.2 折射率波導
5.1.3 離子佈植法
5.1.4 氧化侷限法
5.2 面射型雷射製程技術
5.2.1 蝕刻
5.2.2 選擇性氧化
5.2.3 金屬電極製作
本章習題
參考資料
第六章 紅外光VCSEL技術與應用
6.1 紅外光VCSEL元件
6.1.1 InP異質接面/量子井面射型雷射
6.1.2 InGaAs量子井面射型雷射
6.1.3 InGaAsN量子井面射型雷射
6.1.4 InAs量子點面射型雷射
6.2 紅外光VCSEL應用
6.2.1 光通訊應用與高頻操作
6.2.2 光資訊應用與單模操作
6.2.3 感測器應用
6.3 紅外光VCSEL的近期發展
6.3.1 面射型雷射陣列
6.3.2 多接面面射型雷射
6.3.3 下發光面射型雷射
6.3.4 可定址面射型雷射陣列
本章習題
參考資料
第七章 藍紫光VCSEL技術與應用
7.1 藍紫光VCSEL用之反射鏡
7.2 光激發式藍紫光VCSEL
7.3 電激發式藍紫光VCSEL
7.4 藍紫光VCSEL的近期發展
7.4.1 混合式氮化鎵VCSEL
7.4.2 介電質氮化鎵VCSEL
7.4.3 HCG氮化鎵VCSEL
參考資料
書摘/試閱
1.1 雷射發展歷史
LASER是「light amplification by stimulated emission of radiation」的縮寫,臺灣音譯為雷射,中國大陸意譯為激光,意指光在受激發放大情況下所產生的同調光源。在1964年諾貝爾物理獎頒發給公認雷射理論奠基者包含Charles Townes,Nikolay Basov與Alexander Prokhorov三人之前,不同種類的雷射以及相關專利已經陸續被實際製作出來,包括1960年在休斯實驗室(Hughes Research Laboratories)任職的梅曼(Theodore Maiman)[1]利用閃光燈脈衝光源激發紅寶石晶體產生有史以來第一道人造的同調光源,發光波長為694.3 nm,同一年任職於美國電話電報公司(AT&T)貝爾實驗室(Bell Lab.)的Ali Javan,William Bennett和Donald Herriott成功製作了第一台利用氦氣和氖氣作為增益介質的氣體雷射(HeNe laser)[2],這也是第一個連續波(continuous wave, CW)操作的雷射光源,發光波長為1153 nm[3],半年後另一團隊所製作的氦氖雷射發光波長632.8 nm成為稍後較為普遍被採用的紅光雷射光源[4]。
Ali Javan與Nikolay Basov提出利用半導體材料製作雷射二極體的構想,但是稍早在1956年的時候日本東北大學的西澤潤一教授已經提出雷射二極體的專利申請,甚至比1958年Gordon Gould提出LASER名詞縮寫的時間都還要更早。在1962年Robert N. Hall首次利用砷化鎵(GaAs)材料同質接面(homojunction)結構製作出第一個雷射二極體[5],發光波長為842 nm,可以在77 K液態氮溫度下脈衝操作(pulse operation),同年Nick Holonyak Jr.教授在任職於通用電氣公司(General Electric Co.)時率先採用磷砷化鎵(GaAsP)製作出第一個可見光波段的紅光半導體雷射二極體[6]並發明了第一個紅光發光二極體(light emitting diodes, LED),在1962年底前GE已經開始販售Robert N. Hall開發的砷化鎵雷射二極體和Nick Holonyak Jr.教授開發的磷砷化鎵雷射二極體與發光二極體,其中紅光LED一顆售價260美元,砷化鎵紅外光雷射二極體售價1300美元,磷砷化鎵紅光雷射二極體售價2600美元,同時期德州儀器公司(Texas Instruments, TI)販售的砷化鎵紅外光發光二極體售價為130美元[7]。
在1969年時任職於貝爾實驗室的林嚴雄(Izuo Hayashi)和Morton Panish利用P型砷化鋁鎵―砷化鎵單異質接面結構(p-AlGaAs/p-GaAs heterostructure)首次製作出可以在室溫下連續波操作的半導體雷射二極體[8][9],任職於美國無線電公司RCA的Henry Kressel也採用類似結構[10],同時期Zhores I. Alferov和Herbert Kroemer分別在俄國和美國發展出具有雙異質接面結構(double heterostructure, DHS)的半導體雷射[11]與高速雙載子電晶體(heterojunction bipolar transistor, HBT)製作技術,採用該方法作為半導體雷射主動層增益介質可以有效提升注入載子侷限(carrier confinement)能力,顯著降低達到雷射輸出所需的閾值電流(threshold current)值,該技術迅速提升半導體雷射操作特性,使得雷射技術更為實用,因此兩人連同積體電路發明人之一的Jack Kilby共同獲頒2000年諾貝爾物理獎。
時至今日有許多不同的材料可以用來作為雷射操作所需的增益介質,包括各種固態晶體(例如最早發出雷射光的紅寶石雷射、摻釹釔鋁石榴石雷射Nd:YAG laser[12])、氣體(例如氦氖雷射、二氧化碳雷射等)、染料雷射、化學雷射、準分子雷射、光子晶體雷射、光纖雷射甚至不需要增益介質直接藉由調控電子運動發出同調的電磁波的自由電子雷射,但是其中應用範圍最廣泛的仍然非半導體雷射二極體莫屬。
圖1-1 黑色長方形物體為半導體光激光譜研究用氬離子(Ar+)雷射,前方透明盒裝為100顆TO封裝紅光半導體雷射二極體,體積差異顯著
半導體雷射已經成為現代資訊社會中最重要的光源之一,也是引領人們進入網路資訊數位時代不可或缺的原動力。目前半導體雷射在電子資訊領域最重要的應用可大致區分為光資訊與光通訊兩大主軸;而依照元件結構的主要差異,半導體雷射又可區分為邊射型雷射(edge emitting laser, EEL)與垂直共振腔面射型雷射。其中較晚開始發展的面射型雷射技術與傳統邊射型雷射結構相較之下具有許多先天上的優點,因此在光資訊與光通訊的應用上具有顯著的優勢。
1.2 面射型雷射發展歷程
早期所謂的面射型雷射(surface emitting laser, SEL)本質上仍然是邊射型雷射的延伸,基本上其元件結構的共振腔方向仍然與磊晶面互相平行,光子在水平方向的共振腔中來回震盪直到達到雷射增益閾值條件後從任一側的蝕刻或劈裂鏡面射出高準直性的同調光,再藉由共振腔外部利用蝕刻或其他製程方式形成的週期性光柵[13]-[15]或45度反射鏡面[16]-[18],使原本水平方向的雷射光束轉換成垂直方向,如下圖1-2所示。不過這類型的面射型雷射製程相當複雜且良率與操作特性都相對低落,許多額外的製程步驟需要克服,例如雷射鏡面與外部反射鏡之間的光軸對準、週期性光柵或鏡面蝕刻與高反射率薄膜蒸鍍、外部反射鏡角度微調等,每一項參數都會增加製程困難度並降低良率與可靠度,因此實際上這類技術並未獲得廣泛採用。
真正意義上的垂直共振腔面射型雷射(vertical cavity surface emitting lasers, VCSELs)結構是在1977年東京工業大學的伊賀健一(Kenichi Iga)教授等人所提出的概念[19],基本上該元件是由上下兩個高反射率的反射器夾著具有增益能力的活性層形成雷射共振腔結構,如下圖1-3所示。該雷射結構最關鍵的技術在於高品質的分布布拉格反射器(distributed bragg reflector, DBR)磊晶成長,基本上是藉由調整化合物半導體材料或介電質材料的化學組成,並週期性交錯排列這些不同折射率的材料,如果各層厚度精確控制在四分之一波長的奇數倍時,配合適當的光入射介面邊界值條件,通常是由高折射率材料入射低折射率材料的情況下,就可以形成高反射率鏡面。而當時的磊晶技術尚無法獲得符合雷射操作所需高反射率要求的DBR,在1979年H. Soda和Iga教授與末松安晴(Yasuharu Suematsu)教授共同發表利用液相磊晶技術(liquid phase epitaxy, LPE)成長GaInAsP–InP磷砷化銦鎵―磷化銦材料所製作的第一個垂直共振腔面射型雷射[20],發光波長在1.2微米範圍,因為所採用的發光材料是磷化銦/磷砷化銦鎵系列材料雙異質接面結構,該材料組合導帶能障差異(conduction band offset, ΔEc)較小所以對於注入載子侷限能力改善有限,因此初期只能在77 K液態氮冷卻的低溫環境下以脈衝方式操作,直到1984年改採用載子侷限能力更優異的砷化鎵/砷化鋁鎵系列材料,才在實驗室階段達成室溫下脈衝操作,發光波長為874 nm[21],在1988年由Fumio Koyama與Iga教授團隊進一步達成室溫下連續波操作[22][23],該團隊採用的磊晶成長技術已經由先前製作半導體雷射二極體時所用的液相磊晶法轉換為更先進的有機金屬化學氣相沉積法(metalorganic chemical vapor deposition, MOCVD,也稱為metalorganic vapor phase epitaxy, MOVPE),這也是目前絕大多數化合物半導體發光元件及高速電子元件所採用的主流磊晶技術。大約同時期在1989年美國電話電報公司AT&T Bell Lab. (貝爾實驗室)卓以和院士所帶領的研究團隊利用分子束磊晶技術(molecular beam epitaxy, MBE)成長全磊晶結構VCSEL元件,並採用離子佈植法製作注入載子侷限孔徑成功在室溫下達成電激發光連續波操作的成果。[24][25]
圖1-3 典型垂直共振腔面射型雷射結構示意圖
圖1-4 名古屋大學赤崎研究所展示2014年諾貝爾物理獎得主赤崎勇與天野浩建構之氮化鎵材料磊晶用MOVPE系統
圖1-5 目前光電產業磊晶成長多採用MOCVD系統為主,左圖為砷化鎵系列材料,右圖為氮化鎵系列材料MOCVD磊晶設備
圖1-6 學術研究機構採用分子束磊晶成長高品質光電半導體材料,左圖為串聯式三五族氮化物/砷化鎵MBE,右圖為為串聯式矽鍺四族系列材料磊晶用MBE。
面射型雷射製作技術也在1980年代中期開始成為眾多公司與研究單位積極發展的研究課題,包括早期擁有最多VCSEL相關專利的全錄公司在矽谷的Palo Alto研究中心Xerox PARC(Xerox Palo Alto Research Center, Inc.)、Gore Photonics、Sandia國家實驗室、Bellcore(Telcordia)等。在投入多年的研發人力與資源之後,1996年起已有包括Honeywell、Mitel、Emcore Mode、Agilent和Cielo等公司推出多種商品化量產產品面市,並且在1999年全球VCSEL元件出貨量已經突破1000萬顆。然而相關的研究仍持續進行中,除了應用選擇性氧化技術製造紅外光光纖通訊用面射型雷射以外,可見光面射型雷射的相關研究也相當引人關注,特別是在1998年中村修二博士發表氮化鎵材料所製作的高效能藍光半導體雷射二極體後,如何製作涵蓋完整可見光頻譜範圍的紅、綠、藍光面射型雷射也成為具有高度挑戰性的研究主題。除了波長上的考量以外,如何提高調變頻寬以及製作單模輸出面射型雷射也是相當熱門的研究題目。
LASER是「light amplification by stimulated emission of radiation」的縮寫,臺灣音譯為雷射,中國大陸意譯為激光,意指光在受激發放大情況下所產生的同調光源。在1964年諾貝爾物理獎頒發給公認雷射理論奠基者包含Charles Townes,Nikolay Basov與Alexander Prokhorov三人之前,不同種類的雷射以及相關專利已經陸續被實際製作出來,包括1960年在休斯實驗室(Hughes Research Laboratories)任職的梅曼(Theodore Maiman)[1]利用閃光燈脈衝光源激發紅寶石晶體產生有史以來第一道人造的同調光源,發光波長為694.3 nm,同一年任職於美國電話電報公司(AT&T)貝爾實驗室(Bell Lab.)的Ali Javan,William Bennett和Donald Herriott成功製作了第一台利用氦氣和氖氣作為增益介質的氣體雷射(HeNe laser)[2],這也是第一個連續波(continuous wave, CW)操作的雷射光源,發光波長為1153 nm[3],半年後另一團隊所製作的氦氖雷射發光波長632.8 nm成為稍後較為普遍被採用的紅光雷射光源[4]。
Ali Javan與Nikolay Basov提出利用半導體材料製作雷射二極體的構想,但是稍早在1956年的時候日本東北大學的西澤潤一教授已經提出雷射二極體的專利申請,甚至比1958年Gordon Gould提出LASER名詞縮寫的時間都還要更早。在1962年Robert N. Hall首次利用砷化鎵(GaAs)材料同質接面(homojunction)結構製作出第一個雷射二極體[5],發光波長為842 nm,可以在77 K液態氮溫度下脈衝操作(pulse operation),同年Nick Holonyak Jr.教授在任職於通用電氣公司(General Electric Co.)時率先採用磷砷化鎵(GaAsP)製作出第一個可見光波段的紅光半導體雷射二極體[6]並發明了第一個紅光發光二極體(light emitting diodes, LED),在1962年底前GE已經開始販售Robert N. Hall開發的砷化鎵雷射二極體和Nick Holonyak Jr.教授開發的磷砷化鎵雷射二極體與發光二極體,其中紅光LED一顆售價260美元,砷化鎵紅外光雷射二極體售價1300美元,磷砷化鎵紅光雷射二極體售價2600美元,同時期德州儀器公司(Texas Instruments, TI)販售的砷化鎵紅外光發光二極體售價為130美元[7]。
在1969年時任職於貝爾實驗室的林嚴雄(Izuo Hayashi)和Morton Panish利用P型砷化鋁鎵―砷化鎵單異質接面結構(p-AlGaAs/p-GaAs heterostructure)首次製作出可以在室溫下連續波操作的半導體雷射二極體[8][9],任職於美國無線電公司RCA的Henry Kressel也採用類似結構[10],同時期Zhores I. Alferov和Herbert Kroemer分別在俄國和美國發展出具有雙異質接面結構(double heterostructure, DHS)的半導體雷射[11]與高速雙載子電晶體(heterojunction bipolar transistor, HBT)製作技術,採用該方法作為半導體雷射主動層增益介質可以有效提升注入載子侷限(carrier confinement)能力,顯著降低達到雷射輸出所需的閾值電流(threshold current)值,該技術迅速提升半導體雷射操作特性,使得雷射技術更為實用,因此兩人連同積體電路發明人之一的Jack Kilby共同獲頒2000年諾貝爾物理獎。
時至今日有許多不同的材料可以用來作為雷射操作所需的增益介質,包括各種固態晶體(例如最早發出雷射光的紅寶石雷射、摻釹釔鋁石榴石雷射Nd:YAG laser[12])、氣體(例如氦氖雷射、二氧化碳雷射等)、染料雷射、化學雷射、準分子雷射、光子晶體雷射、光纖雷射甚至不需要增益介質直接藉由調控電子運動發出同調的電磁波的自由電子雷射,但是其中應用範圍最廣泛的仍然非半導體雷射二極體莫屬。
圖1-1 黑色長方形物體為半導體光激光譜研究用氬離子(Ar+)雷射,前方透明盒裝為100顆TO封裝紅光半導體雷射二極體,體積差異顯著
半導體雷射已經成為現代資訊社會中最重要的光源之一,也是引領人們進入網路資訊數位時代不可或缺的原動力。目前半導體雷射在電子資訊領域最重要的應用可大致區分為光資訊與光通訊兩大主軸;而依照元件結構的主要差異,半導體雷射又可區分為邊射型雷射(edge emitting laser, EEL)與垂直共振腔面射型雷射。其中較晚開始發展的面射型雷射技術與傳統邊射型雷射結構相較之下具有許多先天上的優點,因此在光資訊與光通訊的應用上具有顯著的優勢。
1.2 面射型雷射發展歷程
早期所謂的面射型雷射(surface emitting laser, SEL)本質上仍然是邊射型雷射的延伸,基本上其元件結構的共振腔方向仍然與磊晶面互相平行,光子在水平方向的共振腔中來回震盪直到達到雷射增益閾值條件後從任一側的蝕刻或劈裂鏡面射出高準直性的同調光,再藉由共振腔外部利用蝕刻或其他製程方式形成的週期性光柵[13]-[15]或45度反射鏡面[16]-[18],使原本水平方向的雷射光束轉換成垂直方向,如下圖1-2所示。不過這類型的面射型雷射製程相當複雜且良率與操作特性都相對低落,許多額外的製程步驟需要克服,例如雷射鏡面與外部反射鏡之間的光軸對準、週期性光柵或鏡面蝕刻與高反射率薄膜蒸鍍、外部反射鏡角度微調等,每一項參數都會增加製程困難度並降低良率與可靠度,因此實際上這類技術並未獲得廣泛採用。
真正意義上的垂直共振腔面射型雷射(vertical cavity surface emitting lasers, VCSELs)結構是在1977年東京工業大學的伊賀健一(Kenichi Iga)教授等人所提出的概念[19],基本上該元件是由上下兩個高反射率的反射器夾著具有增益能力的活性層形成雷射共振腔結構,如下圖1-3所示。該雷射結構最關鍵的技術在於高品質的分布布拉格反射器(distributed bragg reflector, DBR)磊晶成長,基本上是藉由調整化合物半導體材料或介電質材料的化學組成,並週期性交錯排列這些不同折射率的材料,如果各層厚度精確控制在四分之一波長的奇數倍時,配合適當的光入射介面邊界值條件,通常是由高折射率材料入射低折射率材料的情況下,就可以形成高反射率鏡面。而當時的磊晶技術尚無法獲得符合雷射操作所需高反射率要求的DBR,在1979年H. Soda和Iga教授與末松安晴(Yasuharu Suematsu)教授共同發表利用液相磊晶技術(liquid phase epitaxy, LPE)成長GaInAsP–InP磷砷化銦鎵―磷化銦材料所製作的第一個垂直共振腔面射型雷射[20],發光波長在1.2微米範圍,因為所採用的發光材料是磷化銦/磷砷化銦鎵系列材料雙異質接面結構,該材料組合導帶能障差異(conduction band offset, ΔEc)較小所以對於注入載子侷限能力改善有限,因此初期只能在77 K液態氮冷卻的低溫環境下以脈衝方式操作,直到1984年改採用載子侷限能力更優異的砷化鎵/砷化鋁鎵系列材料,才在實驗室階段達成室溫下脈衝操作,發光波長為874 nm[21],在1988年由Fumio Koyama與Iga教授團隊進一步達成室溫下連續波操作[22][23],該團隊採用的磊晶成長技術已經由先前製作半導體雷射二極體時所用的液相磊晶法轉換為更先進的有機金屬化學氣相沉積法(metalorganic chemical vapor deposition, MOCVD,也稱為metalorganic vapor phase epitaxy, MOVPE),這也是目前絕大多數化合物半導體發光元件及高速電子元件所採用的主流磊晶技術。大約同時期在1989年美國電話電報公司AT&T Bell Lab. (貝爾實驗室)卓以和院士所帶領的研究團隊利用分子束磊晶技術(molecular beam epitaxy, MBE)成長全磊晶結構VCSEL元件,並採用離子佈植法製作注入載子侷限孔徑成功在室溫下達成電激發光連續波操作的成果。[24][25]
圖1-3 典型垂直共振腔面射型雷射結構示意圖
圖1-4 名古屋大學赤崎研究所展示2014年諾貝爾物理獎得主赤崎勇與天野浩建構之氮化鎵材料磊晶用MOVPE系統
圖1-5 目前光電產業磊晶成長多採用MOCVD系統為主,左圖為砷化鎵系列材料,右圖為氮化鎵系列材料MOCVD磊晶設備
圖1-6 學術研究機構採用分子束磊晶成長高品質光電半導體材料,左圖為串聯式三五族氮化物/砷化鎵MBE,右圖為為串聯式矽鍺四族系列材料磊晶用MBE。
面射型雷射製作技術也在1980年代中期開始成為眾多公司與研究單位積極發展的研究課題,包括早期擁有最多VCSEL相關專利的全錄公司在矽谷的Palo Alto研究中心Xerox PARC(Xerox Palo Alto Research Center, Inc.)、Gore Photonics、Sandia國家實驗室、Bellcore(Telcordia)等。在投入多年的研發人力與資源之後,1996年起已有包括Honeywell、Mitel、Emcore Mode、Agilent和Cielo等公司推出多種商品化量產產品面市,並且在1999年全球VCSEL元件出貨量已經突破1000萬顆。然而相關的研究仍持續進行中,除了應用選擇性氧化技術製造紅外光光纖通訊用面射型雷射以外,可見光面射型雷射的相關研究也相當引人關注,特別是在1998年中村修二博士發表氮化鎵材料所製作的高效能藍光半導體雷射二極體後,如何製作涵蓋完整可見光頻譜範圍的紅、綠、藍光面射型雷射也成為具有高度挑戰性的研究主題。除了波長上的考量以外,如何提高調變頻寬以及製作單模輸出面射型雷射也是相當熱門的研究題目。
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。