梯度提升算法實戰:基於XGBoost和scikit-learn(簡體書)
商品資訊
ISBN13:9787302659518
出版社:清華大學出版社(大陸)
作者:(美)科里‧韋德
出版日:2024/04/16
裝訂/頁數:平裝/218頁
規格:24cm*17cm (高/寬)
版次:一版
商品簡介
相關商品
商品簡介
XGBoost是一種經過行業驗證的開源軟件庫,為快速高效地處理數十億數據點提供了梯度提升框架。首先,本書在介紹機器學習和XGBoost在scikit-learn中的應用後,逐步深入梯度提升背後的理論知識。讀者將學習決策樹,並分析在機器學習環境中的裝袋技術,同時學習拓展到XGBoost的超參數;並將從零開始構建梯度提升模型,將梯度提升擴展到大數據領域,同時通過計時器的使用瞭解速度限制。接著,本書重點探討XGBoost的細節,著重於速度提升和通過數學推導導出參數。通過詳細案例研究,讀者將練習使用scikit-learn及原始的Python API構建和微調XGBoost分類器與回歸器;並學習如何利用XGBoost的超參數來提高評分、糾正缺失值、縮放不平衡數據集,並微調備選基學習器。最後,讀者將學習應用高級XGBoost技術,如構建非相關的集成模型、堆疊模型,並使用稀疏矩陣、定制轉換器和管道為行業部署準備模型。
本書適合作為高等學校計算機專業、軟件工程專業的高年級本科生及研究生教材,同時適合有一定機器學習基礎的數據科學家、機器學習工程師和研究人員閱讀,可為解決複雜的機器學習問題提供實用指導。
本書適合作為高等學校計算機專業、軟件工程專業的高年級本科生及研究生教材,同時適合有一定機器學習基礎的數據科學家、機器學習工程師和研究人員閱讀,可為解決複雜的機器學習問題提供實用指導。
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。
特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。
無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。