Spectral spaces are a class of topological spaces. They are a tool linking algebraic structures, in a very wide sense, with geometry. They were invented to give a functional representation of Boolean algebras and distributive lattices and subsequently gained great prominence as a consequence of Grothendieck's invention of schemes. There are more than 1,000 research articles about spectral spaces, but this is the first monograph. It provides an introduction to the subject and is a unified treatment of results scattered across the literature, filling in gaps and showing the connections between different results. The book includes new research going beyond the existing literature, answering questions that naturally arise from this comprehensive approach. The authors serve graduates by starting gently with the basics. For experts, they lead them to the frontiers of current research, making this book a valuable reference source.
This text organizes a range of results in chromatic homotopy theory, running a single thread through theorems in bordism and a detailed understanding of the moduli of formal groups. It emphasizes the naturally occurring algebro-geometric models that presage the topological results, taking the reader through a pedagogical development of the field. In addition to forming the backbone of the stable homotopy category, these ideas have found application in other fields: the daughter subject 'elliptic cohomology' abuts mathematical physics, manifold geometry, topological analysis, and the representation theory of loop groups. The common language employed when discussing these subjects showcases their unity and guides the reader breezily from one domain to the next, ultimately culminating in the construction of Witten's genus for String manifolds. This text is an expansion of a set of lecture notes for a topics course delivered at Harvard University during the spring term of 2016.