This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's 'hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n,F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.
Groups and Manifolds is an introductory, yet a complete self-contained course on mathematics of symmetry: group theory and differential geometry of symmetric spaces, with a variety of examples for phy
This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from t
Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti–Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel–Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.
The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.
The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.
This up-to-date introduction to Griffiths' theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. Starting with an explanation of Griffiths' basic theory, the authors go on to introduce spectral sequences and Koszul complexes that are used to derive results about cycles on higher-dimensional algebraic varieties such as the Noether–Lefschetz theorem and Nori's theorem. They explain differential geometric methods, leading up to proofs of Arakelov-type theorems, the theorem of the fixed part and the rigidity theorem. They also use Higgs bundles and harmonic maps to prove the striking result that not all compact quotients of period domains are Kähler. This thoroughly revised second edition includes a new third part covering important recent developments, in which the group-theoretic approach to Hodge structures is explained, leading to Mumford–Tate groups and their associated domains, the Mumford–Tate varieties and generalization
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book m
This book explains the nature and a way of generation of fractals based on recursive equations staring from the simplest 2-dimensional ones, through the higher-dimensional (4- and 8-dimensional), and
For a senior undergraduate or first year graduate-level course in Introduction to Topology. Appropriate for a one-semester course on both general and algebraic topology or separate courses treating ea
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important res
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important res
This comprehensive text for beginning graduate-level students immediately found a significant audience upon its initial 1955 publication, and it remains a highly worthwhile and relevant book for stude
Euclidean and other geometries are distinguished by the transformations that preserve their essential properties. Using linear algebra and transformation groups, this book provides a readable exposition of how these classical geometries are both differentiated and connected. Following Cayley and Klein, the book builds on projective and inversive geometry to construct 'linear' and 'circular' geometries, including classical real metric spaces like Euclidean, hyperbolic, elliptic, and spherical, as well as their unitary counterparts. The first part of the book deals with the foundations and general properties of the various kinds of geometries. The latter part studies discrete-geometric structures and their symmetries in various spaces. Written for graduate students, the book includes numerous exercises and covers both classical results and new research in the field. An understanding of analytic geometry, linear algebra, and elementary group theory is assumed.
What are the chances?! This exclamation greets the scarcely believable coincidence - you're picked up by the same taxi driver several years and thousands of miles apart or, in a second-hand bookshop f
This well-written and engaging volume introduces knot theory, an area of growing interest in contemporary math teaching. The hands-on approach features many exercises to be completed by readers and re
This book provides a systematic presentation of the mathematical foundation of modern physics with applications particularly within classical mechanics and the theory of relativity. Among the themes p