TOP
0
0
12/26年度盤點作業,門市店休一天,網路書店將暫停出貨,12/27將恢復正常營業,造成不便敬請見諒
機器學習:局部和整體的學習:英文(簡體書)
滿額折

機器學習:局部和整體的學習:英文(簡體書)

商品資訊

人民幣定價:70 元
定價
:NT$ 420 元
優惠價
87365
絕版無法訂購
商品簡介
目次
相關商品

商品簡介

Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms。 Specifically, the book distinguishes the inner nature of machine learning algorithms as either “local learning”or “global learning。”This theory not only connects previous machine learning methods, or serves as roadmap in various models, but more importantly it also motivates a theory that can learn from data both locally and globally。 This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field。 The book reviews current topics,new theories and applications。 Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong。 Haiqin Yang leads the image processing group at HiSilicon Technologies。 Irwin King and Michael R。 Lyu are professors at the Computer Science and Engineering department of the Chinese University of Hong Kong。

目次

1 Introduction
1.1 Learning and Global Modeling
1.2 Learning and Local Modeling
1.3 Hybrid Learning
1.4 Major Contributions
1.5 Scope
1.6 Book 0rganization
References
2 Global Learning VS.Local Learning
2.1 Problem Definition
2.2 Global Learning
2.2.1 Generative Learning
2.2.2 Non—parametric Learning
2.2.3 The Minimum Error Minimax Probability Machine
2.3 Local Learning
2.4 Hybrid Learning
2.5 Maxi—Min Margin Machine
References
3 A General Global Learning Modeh MEMPM
3.1 Marshall and 0lkin Theory
3.2 Minimum Error Minimax Probability Decision Hyperplane
3.2.1 Problem Definition
3.2.2 Interpretation
3.2.3 Special Case for Biased Classifications
3.2.4 Solving the MEMPM Optimization Problem
3.2.5 When the Worst—case Bayes Optimal Hyperplane Becomes the True One
3.2.6 Geometrical InterDretation
 3.3 Robust Version
 3.4 Kernelization
3.4.1 Kernelization Theory for BMPM
3.4.2 Notations in Kernelization Theorem of BMPM
3.4.3 Kernelization Results
 3.5 Experiments
3.5.1 Model Illustration on a Synthetic Dataset
3.5.2 Evaluations on Benchmark Datasets
3.5.3 Evaluations of BMPM on Heart.disease Dataset
 3.6 HOW Tight Is the Bound
 3.7 On the Concavity of MEMPM
 3.8 Limitations and Future Work
 3.9 Summary
ReferencesE
4 Learning Locally and Globally:Maxi-Min Margin Machine
4.1 Maxi—Min Margin Machine
4.1.1 Separable Case
4.1.2 Connections with Other Models
4.1.3 Nonseparable Case
4.1.4 Further Connection with Minimum Error Minimax Probability Machine
4.2 Bound on the Error Rate
4.3 Reduction
4.4 KernelizatiOn
4.4.1 Foundation of Kernelization for M4
4.4.2 Kernelization Result
 4.5 Experiments
4.5.1 Evaluations on Three Synthetic Toy Datasets
4.5.2 Evaluations on Benchmark Datasets
4.6 Discussions and Future Work
4.7 Summary
References
5 ExtensionⅠ:BMPM for Imbalanced Learning
 5.1 Introduction to Imbalanced Learning
5.2 Biased Minimax Probability Machine
5.3 Learning from Imbalanced Data by Using BMPM
5.3.1 Four Criteria to Evaluate Learning from Imbalanced Data
5.3.2 BMPM for Maximizing the Sum of the Accuracies
5.3.3 BMPM for ROC Analysis
6 ExtensionⅡ :A Regression Model from M4
7 ExtensionⅢ:Variational Margin Settings within Local Data
8 Conclusion and Future Work
References
Index

您曾經瀏覽過的商品

購物須知

大陸出版品因裝訂品質及貨運條件與台灣出版品落差甚大,除封面破損、內頁脫落等較嚴重的狀態,其餘商品將正常出貨。

特別提醒:部分書籍附贈之內容(如音頻mp3或影片dvd等)已無實體光碟提供,需以QR CODE 連結至當地網站註冊“並通過驗證程序”,方可下載使用。

無現貨庫存之簡體書,將向海外調貨:
海外有庫存之書籍,等候約45個工作天;
海外無庫存之書籍,平均作業時間約60個工作天,然不保證確定可調到貨,尚請見諒。

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:87 365
絕版無法訂購

暢銷榜

客服中心

收藏

會員專區