TQC+ Python3.x機器學習基礎與應用特訓教材
數學真奇妙系列:四則運算

TOP
6
0
2025新年快樂!天天領券享優惠!
TQC+ Python3.x機器學習基礎與應用特訓教材
滿額折

TQC+ Python3.x機器學習基礎與應用特訓教材

商品資訊

定價
:NT$ 590 元
優惠價
95561
庫存:1
下單可得紅利積點:16 點
商品簡介
目次
相關商品

商品簡介

本書範例題目內容為認證題型與命題方向之示範,正式測驗試題不以範例題目為限。
1.內容由淺入深,採循序漸進的方式建立您運用機器學習解決問題的基本概念,達到技術的傳承及表達,符合實務運用需求。
2.本書共有七個章節,包含「Python與機器學習」、「數據前處理」、「監督式學習:迴歸」、「監督式學習:分類」、「模型擬合、評估與超參數調校」、「非監督式學習:降維與分群」、「集成學習」、「機器學習應用」,帶領讀者快速從資料中自動分析獲得規律,並利用規律對未知資料進行預測與分類,是為實現人工智慧:機器學習實際表現之最佳讀本。
3.題庫練習 歡迎到雲端練功坊(https://cloud.csf.org.tw)來充電、練功。
4.配合中華民國電腦技能基金會(https://www.csf.org.tw)測驗,一舉取得專業證照,讓您求學、求職更具競爭力。

目次

Chapter 0 Python與機器學習
0-1 Python發展與編寫環境
0-2 機器學習
0-3 機器學習使用Python
0-4 基礎數學與Python實作
0-5 小結
綜合範例
Chapter 0習題
Chapter 1 數據前處理
1-1 數據類型
1-2 遺漏值
1-3 切割數據集
1-4 異常值
1-5 選取重要特徵
1-6 小結
綜合範例
Chapter 1習題
Chapter 2 監督式學習:迴歸
2-1 線性迴歸
2-2 評估迴歸模型的效能
2-3 正規化的迴歸
2-4 處理非線性關係
2-5 小結
綜合範例
Chapter 2習題
Chapter 3 監督式學習:分類
3-1 迴歸vs分類
3-2 評估分類器的效能
3-3 邏輯斯迴歸
3-4 支援向量機
3-5 樸素貝氏分類
3-6 決策樹
3-8 小結
綜合範例
Chapter 3習題
3-7 K最近鄰
Chapter 4 模型擬合、評估與超參數調校
4-1 工作流程管道化
4-2 過擬合與欠擬合
4-3 評估模型效能
4-4 調校超參數
4-5 處理類別不平衡
4-6 小結
綜合範例
Chapter 4習題
Chapter 5 非監督式學習:降維與分群
5-1 主成分分析降維
5-2 k-means分群
5-3 階層式分群
5-4 DBSCAN分群
5-5 鄰近傳播分群
5-6 小結
綜合範例
Chapter 5習題
Chapter 6 集成學習
6-1 以袋裝法集思廣益
6-2 以提升法互補有無
6-3 以堆疊法兼容並蓄
6-4 小結
綜合範例
Chapter 6習題
Chapter 7 機器學習應用
7-1 自然語言處理
7-2 序列資料處理
7-3 小結
綜合範例
Chapter 7習題
附錄
TQC+人工智慧:機器學習Python 3認證簡章
問題反應表

購物須知

為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。

若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。

優惠價:95 561
庫存:1

暢銷榜

客服中心

收藏

會員專區