7小時微積分pass過(電子書)
商品資訊
定價
:NT$ 399 元優惠價
:70 折 279 元
閱讀器:書紐電子書
下單可得紅利積點:8 點
商品簡介
作者簡介
序
目次
書摘/試閱
相關商品
商品簡介
◎什麼是斜率?這是微積分的基礎,化成火車時刻表就很好懂。
◎球體的表面積和體積怎麼算?把水餃看成球,皮是表面積,餡就是體積。
◎曲線的極值點是?就是股價圖的轉折處,反彈上漲時是極小值,下跌時是極大值。
本書作者劉祺,是程式設計師、數學達人,
他用10個生活中常見的場景,先說明數學的基本原理,再帶入微積分概念,
有別於一般教科書或講義直接強調公式定理、盲目計算證明,
就像有個精通微積分的朋友在面前,一步一步慢慢講解給你聽一樣。
函數、曲線、斜率、極限、導數、不定積分、均值定理、圓面積和圓周長……
學測、分科測驗爭分關鍵、商學院大一必修,
基礎微積分概念,只要1天1小時,7天就能全部搞懂,
如果你怕重修、或重修中,這一回一定能輕鬆「過」。
◎函數是啥?是一種對應關係。用「縮印」來比方
‧如果1張紙裡可以印4頁內容,2張紙可以印8頁內容,
寫成算式就是:實際使用張數=要列印內容的頁數÷4。
「實際使用幾張」紙,會隨著「要列印幾頁」內容而改變,
用函數y=f(x)來表示,
「要列印幾頁」是x,「實際使用張數」就是y。
◎斜率是微積分的基礎,化成火車時刻表就好懂
‧把火車時刻表畫成座標圖,
水平方向是時間,垂直方向是站名,斜率就是火車速度,
當速度越快,座標圖裡兩站之間的直線就越陡,斜率也越大。
‧為什麼函數裡的數值越大,斜率越趨近於0?用揉麵團做比喻就知道。
剛開始揉時,添加少量麵粉,麵團一下就變大很多,
等到麵團大小達到臨界值時,再加入麵粉,體積變化就不明顯,
甚至看不出來(幾乎沒有變大就是趨近於0)。
◎覺得微分較易懂,積分難想像?
看一件衣服用掉多少布,學曲邊梯形面積怎麼算
‧衣服的每一片布面,都可以看成是一個由曲線圍成的面積,
布料裡的織線,就像是把圖形切成寬度趨近於0的長方形,
把所有長方形(所有織線)加總起來,
就是曲邊梯形的面積(布面面積)。
◎看到符號就頭痛?其實意思很直白
‧微積分裡最常見的符號∫,
是英文單字Summation(總和)字首S的變形,
表示計算後方運算式的「和」,類似於∑(sigma)。
‧還有lim、x→x0、f(4)……
是什麼意思?為什麼有時可以省略?
商管學院學生必備、高中生爭分必讀,快速搞定斜率、曲邊梯形面積、極限……
微積分不再是大魔王。
◎球體的表面積和體積怎麼算?把水餃看成球,皮是表面積,餡就是體積。
◎曲線的極值點是?就是股價圖的轉折處,反彈上漲時是極小值,下跌時是極大值。
本書作者劉祺,是程式設計師、數學達人,
他用10個生活中常見的場景,先說明數學的基本原理,再帶入微積分概念,
有別於一般教科書或講義直接強調公式定理、盲目計算證明,
就像有個精通微積分的朋友在面前,一步一步慢慢講解給你聽一樣。
函數、曲線、斜率、極限、導數、不定積分、均值定理、圓面積和圓周長……
學測、分科測驗爭分關鍵、商學院大一必修,
基礎微積分概念,只要1天1小時,7天就能全部搞懂,
如果你怕重修、或重修中,這一回一定能輕鬆「過」。
◎函數是啥?是一種對應關係。用「縮印」來比方
‧如果1張紙裡可以印4頁內容,2張紙可以印8頁內容,
寫成算式就是:實際使用張數=要列印內容的頁數÷4。
「實際使用幾張」紙,會隨著「要列印幾頁」內容而改變,
用函數y=f(x)來表示,
「要列印幾頁」是x,「實際使用張數」就是y。
◎斜率是微積分的基礎,化成火車時刻表就好懂
‧把火車時刻表畫成座標圖,
水平方向是時間,垂直方向是站名,斜率就是火車速度,
當速度越快,座標圖裡兩站之間的直線就越陡,斜率也越大。
‧為什麼函數裡的數值越大,斜率越趨近於0?用揉麵團做比喻就知道。
剛開始揉時,添加少量麵粉,麵團一下就變大很多,
等到麵團大小達到臨界值時,再加入麵粉,體積變化就不明顯,
甚至看不出來(幾乎沒有變大就是趨近於0)。
◎覺得微分較易懂,積分難想像?
看一件衣服用掉多少布,學曲邊梯形面積怎麼算
‧衣服的每一片布面,都可以看成是一個由曲線圍成的面積,
布料裡的織線,就像是把圖形切成寬度趨近於0的長方形,
把所有長方形(所有織線)加總起來,
就是曲邊梯形的面積(布面面積)。
◎看到符號就頭痛?其實意思很直白
‧微積分裡最常見的符號∫,
是英文單字Summation(總和)字首S的變形,
表示計算後方運算式的「和」,類似於∑(sigma)。
‧還有lim、x→x0、f(4)……
是什麼意思?為什麼有時可以省略?
商管學院學生必備、高中生爭分必讀,快速搞定斜率、曲邊梯形面積、極限……
微積分不再是大魔王。
作者簡介
劉祺
2004年成為程式設計師,曾參與多篇外文學術文獻的翻譯工作。目前是圖像程式設計師、獨立駭客、數學達人。
熱心的開源(Open Source)社群志願者,並為程式語言Rust和瀏覽器引擎Servo提供中文化介面。參與《Rust程式語言》翻譯工作,撰寫〈橢圓面積公式推導方法比較〉、〈人肉挑戰尤拉計畫〉、〈除了吃以外的世界:舌尖上的數學〉等廣受好評的文章。
目前在個人公眾號上連載《磨磨嘰嘰的C語言:C語言入門到精通》。
2004年成為程式設計師,曾參與多篇外文學術文獻的翻譯工作。目前是圖像程式設計師、獨立駭客、數學達人。
熱心的開源(Open Source)社群志願者,並為程式語言Rust和瀏覽器引擎Servo提供中文化介面。參與《Rust程式語言》翻譯工作,撰寫〈橢圓面積公式推導方法比較〉、〈人肉挑戰尤拉計畫〉、〈除了吃以外的世界:舌尖上的數學〉等廣受好評的文章。
目前在個人公眾號上連載《磨磨嘰嘰的C語言:C語言入門到精通》。
序
作者序 聖賢皆寂寞,勝者留其名
中國共產黨不是一塊石頭,從成立的1921年開始,已經超過了100年。這段漫長歲月是動盪的年代,活躍於舞臺上明星們也激烈的改換了。更替的理由有二:戰死,跟自家人的審判。未戰死、也沒受到自己人公審而倖存下來,最後逐步掌握權力的人,方能留下英雄美名。
換句話說,現代的中國共產黨就是所謂的「勝利組」,就像一棵扎根於「過去」的大樹上綻放的花朵一樣。我們因為眼裡只看到盛開的花,就逐漸忘記地底深處擴散的樹根,但根部卻至今仍切切實實的生長著,若非如此,這樹木早就乾枯了。
有人說中國是個無法理解的國家,因為中國的見解一直遵循著過去的方針和主張,和日本或者世界的常識大相逕庭,朝著旁人無法預想的方向前進。然而,這只不過是歷史的洪流中必然的結果罷了,看不清這點,一定是因為隱藏的史實太多,因而漏失了其中的一些線索。
中國共產黨究竟是怎麼誕生的?粗略來看,要說是源自孫中山、蘇聯(當時)與日本也無不可。孫中山是個革命家,同時也是連日本也十分熟悉的中國人,他仰賴日本跟其他各國的金援,發動了辛亥革命,最後打倒清廷、建立國民政府。
當時的日本,是亞洲諸國中最早實現近代化的國家;優秀的中國人因此十分嚮往日本,並為了學習西歐的近代化而前往日本。中國共產黨在草創初期學習到的社會主義思想,幾乎都是透過日本習得。現代的日本人似乎並沒有對當時的日本給予太高的評價、也不表示關心。我不知道這究竟是出於謙虛的民族性?還是戰敗的挫折感讓他們自信全失?然而,即便是現在,也有不少中國人對當時的日本賦予高度評價。
孫中山創立的國民政府,在他死後曾建立一段屬於中華民國的時代。雖然沒多久就被共產黨取而代之,但孫中山卻對蘇聯提倡的社會主義理想起了共鳴,不但積極的接受支援,也與共產黨合作。
孫中山的根據地,也就是廣東這個地方,傳統上以「革命發源地」廣為人知,也有許多革命家來自這裡,包括創設廣東共產黨的譚平山。有段時間,譚平山位居充滿魅力的共產黨領導地位,而備受推崇,簡直就是偶像一般,但他卻突然從舞臺上消失了。這段從活躍到消失的經過,至今在研究者之間,仍然是個「極大的謎團」。
本書的目的之一,就是解開這個「極大的謎團」。
這裡有個活生生的證人,正確說來,應該是在1999年以106歲高齡辭世,我的叔公「譚天度」這號人物。本書雖是仰賴他的記憶,開始陳述這段故事,但主角應該說是時代本身才對。這是我從廣東這個中國的小小一隅,透過個人觀點,重新審視過的歷史繪卷,與眾所周知的中國「正史」迥異,換句話說,要是將本書當成中國共產黨被埋葬的「外史」,也無妨。
我的父親名喚譚諍。1925年,時值16歲的他進入廣東省廣州市的高等學校廣雅中學就讀,沒多久就加入中國共產黨的青少年組織,也就是社會主義青年團,擔任書記(編按:在社會主義政黨中,書記是指主持日常事務的領導人)一職。隔年1926年,第一次「國共合作」時,社會主義青年團也跟共產黨一起加入了國民黨。
1927年春天,我的父親以18歲的年紀,被任命為廣東的共產黨組織祕書之後,除了於廣東區委員會的事務所進行相關活動,也跟譚平山、陳延年、惲(音同「運」)代英等這些廣東共產黨的指導們私交甚篤。關於長輩譚平山,父親印象最深刻的,就是他常對著桌子寫東西的身影,以及偶爾交臂、閉眼沉思的模樣。對我提起這些事的父親,在2001年4月6日以91歲高齡過世,如今已是令人懷念的回憶了。
我在蒐集資料的當時,不光獲得京都大學名譽教授狹間直樹先生(日本的中國現代史權威)、京都大學教授石川禎浩先生及江田憲治先生、神戶大學教授緒形康先生等人諸多協助,甚至長時間仔細的給予指導,我對此深感謝意。
本書的出版,也受到文藝春秋社文春新書編輯部的宇田川真先生當時的全面支持,同樣致上感謝之意。
推薦序
官方正史多寫神話,外史更能一窺真相
建國中學退休歷史老師╱周志宇
「政府為團結抗日,允其(中共)所請,將陝北之殘共編為國民革命軍第八路軍(旋改稱第十八集團軍),潛伏江南之殘共,編為新編第四軍(簡稱新四軍)。共軍改編後,初計3萬人,表面服從政府,暗中擴張勢力。羽毛既豐,故態復萌,竊據地盤,襲擊國軍。民國29年10月,軍事委員會命令新四軍調往江北,不惟不理,反而襲擊國軍……。」
這是舊版國立編譯館所編《高級中學歷史教科書》第三冊中的描述。
「中日戰爭以1937年7月的『盧溝橋事變』為開端全面爆發,日軍以勢如破竹的態勢進攻;相對的,國民政府軍的最高司令官蔣介石,卻只把共產黨軍送往前線,把國民黨軍部署在後方,努力保存勢力。儘管如此,懼於日軍猛烈攻勢的國民黨軍卻喪失士氣,不斷出現戰前逃脫者,因此,日軍十分輕鬆的掌握了廣大的區域。」
這是本書第191頁的描述。
內容看起來是完全相反的兩段文字,而海峽兩岸的華人,各自被迫相信其中之一。大家心中多半知道這些記載並非真相――至少不是全部的真相,現代中國關於國共之間的歷史,猶如迷濛濃霧中的景象,只有一些模糊的輪廓,似乎誰也說不清楚。
其實,不只中國國民黨不談這些事,其中的許多部分,中國共產黨也不談。
嚴格說來,本書不是一本書寫嚴謹的歷史著作,也並未解決很多問題,但是它很好看。好看的地方在於:在充滿了迷霧的歷史氛圍下,海峽兩岸的著作都充滿了意識形態,即使沒有刻意扭曲,卻也不至於誠實書寫。
因此,每當有什麼「揭祕」、「真相」、「祕辛」,或者是大人物的書信、日記、傳記出版時,往往大受歡迎,而且,更令人覺得諷刺的地方在於,人們通常認為這些出版品的內容,比官方正史更可信。
本書便具有這樣的特質。
譚平山和譚天度在臺灣的知名度極低,只有極少數研究現代史的學者,曾經在某些討論中國共產黨或國共衝突的著作中,看過這兩個名字,不過恐怕沒有人會認為他們有什麼特殊的歷史地位。這當然是受到傳統歷史著作觀念的影響所致,人們通常會相信,一個先知式的英雄,才是歷史發展的關鍵,他們的睿智與決心帶領人們走出災難、迎向光明――英明的蔣總統與偉大的毛主席,就曾在海峽兩岸長期扮演這個角色。當然,在偉大先知的領導下,會有一群忠誠的追隨者,於是就形成了大家熟悉的「歷史神話體系」,而這種神話,正是我們的正統歷史教科書中的基本架構,不只在中國如此,在其他國家或文化中,同樣如此。
揭露歷史真相的,往往是小事件
然而,真正推動歷史發展的,是無數的小人物及小事件,而這些「揭祕」、「真相」、「祕辛」之類的著作,所揭露的也正是這些小事件。當然其中有些想要推翻舊權威而另建新權威,例如近年來在中國出現關於周恩來、劉少奇等人的重新評價,甚至直接動搖了偉大毛主席的歷史地位。但藉著這些小小的事件,歷史的輪廓漸漸變得清晰,我們也比以往更可能看到一些歷史的真相。
譚平山和譚天度所代表的,是中國現代史上一個壯闊無比的救國運動,面對長期積弱的中國,面對清末以來從來未曾減削的苦難與恥辱,在各地都有這種知識青年奮起救國圖存,他們組織社團、發動宣傳、訓練演講員、介紹新思潮、聯絡有共同理想的同志共同努力。他們彼此的理念雖然未必相同,手段亦各異其趣,但目標則是一致的。
作者以宛如懸疑小說般的筆調,描述一群共產主義的信仰者,如何在面對國民黨掌握大權、全面捕殺的情況下,努力爭取生存的空間,如何利用國內外的局勢發展自己的勢力,如何在對抗國民黨的同時,還得遭受來自蘇聯的干涉。
當然,譚平山與譚天度在其中所扮演的角色無疑被刻意的強調,不過,本書的寫作目的正是在補充(或是糾正)原本歷史寫作對他們的不公。連帶的,由於周恩來對譚平山的一貫肯定態度,對照毛澤東的冷漠(作者甚至暗示毛可能曾做出對不起譚天度的行為),書中始終對周保持高度的肯定與推崇,對毛則負面得多。而書中談到譚天度那段離奇的婚姻及結果時,那種淡淡的無奈與哀傷,可能是本書最具詩意的一段文字。
作者終究沒有能夠讓那段模糊的歷史變得清晰,甚至其本人的史觀,明顯具有中國與日本觀點的雙重性,但藉著描述兩個具有一定影響力的人物,我們可以更貼近的看到某些真相。
撇開國民黨與共產黨宿命般的對立性觀點,我不禁想到民國64年(1975年)念高中的時候,衡陽路騎樓下那個私下販賣禁書的老頭。那是一個熾熱的午後,讀夜間部的我習慣性的在上學途中繞經那個攤子,看看有沒有「好看的」書。
老頭那天一如既往的對我眨眨眼,四下看了看,確保沒有危險後,從一疊雜誌底下拿出一本書――是香港出版的吧,我記得。綠色的封面,到現在我都還記得當時心中的疑惑與震撼。書名是《周佛海日記》,封面上印著一行大字:「其實,他們也想救中國。」
中國共產黨不是一塊石頭,從成立的1921年開始,已經超過了100年。這段漫長歲月是動盪的年代,活躍於舞臺上明星們也激烈的改換了。更替的理由有二:戰死,跟自家人的審判。未戰死、也沒受到自己人公審而倖存下來,最後逐步掌握權力的人,方能留下英雄美名。
換句話說,現代的中國共產黨就是所謂的「勝利組」,就像一棵扎根於「過去」的大樹上綻放的花朵一樣。我們因為眼裡只看到盛開的花,就逐漸忘記地底深處擴散的樹根,但根部卻至今仍切切實實的生長著,若非如此,這樹木早就乾枯了。
有人說中國是個無法理解的國家,因為中國的見解一直遵循著過去的方針和主張,和日本或者世界的常識大相逕庭,朝著旁人無法預想的方向前進。然而,這只不過是歷史的洪流中必然的結果罷了,看不清這點,一定是因為隱藏的史實太多,因而漏失了其中的一些線索。
中國共產黨究竟是怎麼誕生的?粗略來看,要說是源自孫中山、蘇聯(當時)與日本也無不可。孫中山是個革命家,同時也是連日本也十分熟悉的中國人,他仰賴日本跟其他各國的金援,發動了辛亥革命,最後打倒清廷、建立國民政府。
當時的日本,是亞洲諸國中最早實現近代化的國家;優秀的中國人因此十分嚮往日本,並為了學習西歐的近代化而前往日本。中國共產黨在草創初期學習到的社會主義思想,幾乎都是透過日本習得。現代的日本人似乎並沒有對當時的日本給予太高的評價、也不表示關心。我不知道這究竟是出於謙虛的民族性?還是戰敗的挫折感讓他們自信全失?然而,即便是現在,也有不少中國人對當時的日本賦予高度評價。
孫中山創立的國民政府,在他死後曾建立一段屬於中華民國的時代。雖然沒多久就被共產黨取而代之,但孫中山卻對蘇聯提倡的社會主義理想起了共鳴,不但積極的接受支援,也與共產黨合作。
孫中山的根據地,也就是廣東這個地方,傳統上以「革命發源地」廣為人知,也有許多革命家來自這裡,包括創設廣東共產黨的譚平山。有段時間,譚平山位居充滿魅力的共產黨領導地位,而備受推崇,簡直就是偶像一般,但他卻突然從舞臺上消失了。這段從活躍到消失的經過,至今在研究者之間,仍然是個「極大的謎團」。
本書的目的之一,就是解開這個「極大的謎團」。
這裡有個活生生的證人,正確說來,應該是在1999年以106歲高齡辭世,我的叔公「譚天度」這號人物。本書雖是仰賴他的記憶,開始陳述這段故事,但主角應該說是時代本身才對。這是我從廣東這個中國的小小一隅,透過個人觀點,重新審視過的歷史繪卷,與眾所周知的中國「正史」迥異,換句話說,要是將本書當成中國共產黨被埋葬的「外史」,也無妨。
我的父親名喚譚諍。1925年,時值16歲的他進入廣東省廣州市的高等學校廣雅中學就讀,沒多久就加入中國共產黨的青少年組織,也就是社會主義青年團,擔任書記(編按:在社會主義政黨中,書記是指主持日常事務的領導人)一職。隔年1926年,第一次「國共合作」時,社會主義青年團也跟共產黨一起加入了國民黨。
1927年春天,我的父親以18歲的年紀,被任命為廣東的共產黨組織祕書之後,除了於廣東區委員會的事務所進行相關活動,也跟譚平山、陳延年、惲(音同「運」)代英等這些廣東共產黨的指導們私交甚篤。關於長輩譚平山,父親印象最深刻的,就是他常對著桌子寫東西的身影,以及偶爾交臂、閉眼沉思的模樣。對我提起這些事的父親,在2001年4月6日以91歲高齡過世,如今已是令人懷念的回憶了。
我在蒐集資料的當時,不光獲得京都大學名譽教授狹間直樹先生(日本的中國現代史權威)、京都大學教授石川禎浩先生及江田憲治先生、神戶大學教授緒形康先生等人諸多協助,甚至長時間仔細的給予指導,我對此深感謝意。
本書的出版,也受到文藝春秋社文春新書編輯部的宇田川真先生當時的全面支持,同樣致上感謝之意。
推薦序
官方正史多寫神話,外史更能一窺真相
建國中學退休歷史老師╱周志宇
「政府為團結抗日,允其(中共)所請,將陝北之殘共編為國民革命軍第八路軍(旋改稱第十八集團軍),潛伏江南之殘共,編為新編第四軍(簡稱新四軍)。共軍改編後,初計3萬人,表面服從政府,暗中擴張勢力。羽毛既豐,故態復萌,竊據地盤,襲擊國軍。民國29年10月,軍事委員會命令新四軍調往江北,不惟不理,反而襲擊國軍……。」
這是舊版國立編譯館所編《高級中學歷史教科書》第三冊中的描述。
「中日戰爭以1937年7月的『盧溝橋事變』為開端全面爆發,日軍以勢如破竹的態勢進攻;相對的,國民政府軍的最高司令官蔣介石,卻只把共產黨軍送往前線,把國民黨軍部署在後方,努力保存勢力。儘管如此,懼於日軍猛烈攻勢的國民黨軍卻喪失士氣,不斷出現戰前逃脫者,因此,日軍十分輕鬆的掌握了廣大的區域。」
這是本書第191頁的描述。
內容看起來是完全相反的兩段文字,而海峽兩岸的華人,各自被迫相信其中之一。大家心中多半知道這些記載並非真相――至少不是全部的真相,現代中國關於國共之間的歷史,猶如迷濛濃霧中的景象,只有一些模糊的輪廓,似乎誰也說不清楚。
其實,不只中國國民黨不談這些事,其中的許多部分,中國共產黨也不談。
嚴格說來,本書不是一本書寫嚴謹的歷史著作,也並未解決很多問題,但是它很好看。好看的地方在於:在充滿了迷霧的歷史氛圍下,海峽兩岸的著作都充滿了意識形態,即使沒有刻意扭曲,卻也不至於誠實書寫。
因此,每當有什麼「揭祕」、「真相」、「祕辛」,或者是大人物的書信、日記、傳記出版時,往往大受歡迎,而且,更令人覺得諷刺的地方在於,人們通常認為這些出版品的內容,比官方正史更可信。
本書便具有這樣的特質。
譚平山和譚天度在臺灣的知名度極低,只有極少數研究現代史的學者,曾經在某些討論中國共產黨或國共衝突的著作中,看過這兩個名字,不過恐怕沒有人會認為他們有什麼特殊的歷史地位。這當然是受到傳統歷史著作觀念的影響所致,人們通常會相信,一個先知式的英雄,才是歷史發展的關鍵,他們的睿智與決心帶領人們走出災難、迎向光明――英明的蔣總統與偉大的毛主席,就曾在海峽兩岸長期扮演這個角色。當然,在偉大先知的領導下,會有一群忠誠的追隨者,於是就形成了大家熟悉的「歷史神話體系」,而這種神話,正是我們的正統歷史教科書中的基本架構,不只在中國如此,在其他國家或文化中,同樣如此。
揭露歷史真相的,往往是小事件
然而,真正推動歷史發展的,是無數的小人物及小事件,而這些「揭祕」、「真相」、「祕辛」之類的著作,所揭露的也正是這些小事件。當然其中有些想要推翻舊權威而另建新權威,例如近年來在中國出現關於周恩來、劉少奇等人的重新評價,甚至直接動搖了偉大毛主席的歷史地位。但藉著這些小小的事件,歷史的輪廓漸漸變得清晰,我們也比以往更可能看到一些歷史的真相。
譚平山和譚天度所代表的,是中國現代史上一個壯闊無比的救國運動,面對長期積弱的中國,面對清末以來從來未曾減削的苦難與恥辱,在各地都有這種知識青年奮起救國圖存,他們組織社團、發動宣傳、訓練演講員、介紹新思潮、聯絡有共同理想的同志共同努力。他們彼此的理念雖然未必相同,手段亦各異其趣,但目標則是一致的。
作者以宛如懸疑小說般的筆調,描述一群共產主義的信仰者,如何在面對國民黨掌握大權、全面捕殺的情況下,努力爭取生存的空間,如何利用國內外的局勢發展自己的勢力,如何在對抗國民黨的同時,還得遭受來自蘇聯的干涉。
當然,譚平山與譚天度在其中所扮演的角色無疑被刻意的強調,不過,本書的寫作目的正是在補充(或是糾正)原本歷史寫作對他們的不公。連帶的,由於周恩來對譚平山的一貫肯定態度,對照毛澤東的冷漠(作者甚至暗示毛可能曾做出對不起譚天度的行為),書中始終對周保持高度的肯定與推崇,對毛則負面得多。而書中談到譚天度那段離奇的婚姻及結果時,那種淡淡的無奈與哀傷,可能是本書最具詩意的一段文字。
作者終究沒有能夠讓那段模糊的歷史變得清晰,甚至其本人的史觀,明顯具有中國與日本觀點的雙重性,但藉著描述兩個具有一定影響力的人物,我們可以更貼近的看到某些真相。
撇開國民黨與共產黨宿命般的對立性觀點,我不禁想到民國64年(1975年)念高中的時候,衡陽路騎樓下那個私下販賣禁書的老頭。那是一個熾熱的午後,讀夜間部的我習慣性的在上學途中繞經那個攤子,看看有沒有「好看的」書。
老頭那天一如既往的對我眨眨眼,四下看了看,確保沒有危險後,從一疊雜誌底下拿出一本書――是香港出版的吧,我記得。綠色的封面,到現在我都還記得當時心中的疑惑與震撼。書名是《周佛海日記》,封面上印著一行大字:「其實,他們也想救中國。」
目次
推薦序一 不管數學程度好不好,都能從此了解微積分╱張旭
推薦序二 大學數學的敲門磚,就看這一本╱周虎
推薦序三 從生活問題出發,自然而然學會微積分╱魏少華
前言 從生活學數學,輕鬆搞懂微積分
第1章 函數是一種對應關係,用「縮印」比方
影印店裡的函數和映射
用多元函數計算怎麼影印才划算
商品陳列就是集合的概念
即是筆又是塑膠的原子筆,怎麼分類?
第2章 斜率是微積分的基礎,化成火車時刻表就好懂
從行車軌跡到函數圖像
函數圖像和火車頭一樣,都是對稱的
數列的極限
探討極限的巴塞爾問題
兩個重要極限之一
兩個無窮小怎麼比大小?
兩個重要極限之二
極限是微積分最重要的基礎
第3章 用數學模型推測麵團的大小
無法直接解決問題時,就建立數學模型
最常見的建立模型方法――假設演繹法
做研究也講求直覺和運氣
建立模型時,先忽略會造成影響的變數
16個主要導數公式及推導範例
導數的運算法則,可以直接套用
複合函數的導數這樣算
反函數與反函數求導
第4章 彈珠的滾動速度與導數
導數存在的4大準則
洛爾定理
拉格朗日均值定理
伽利略的困惑
推導瞬間速度的泰勒展開
第5章 把股票走勢變成曲線――曲線擬合概念
曲線擬合――推導符合曲線的函數式
函數也能倒著學,先有圖像再求式子
垂直線不是函數
圓的標準式
橢圓的標準式
三次板條線――擬合不規律曲線的好工具
函數的單調性和駐點
極值點,股價走勢的反彈點
用曲線的凸凹性,模擬股票走勢的階段
凸凹性判斷方法
第6章 橋洞設計與不定積分
沒有準確座標的曲線擬合法
初識積分表
導來導去回到原型的不定積分
證明積分公式的代換法
更簡單的積分計算方法――分部積分法
微積分的樂趣――一題多解
第7章 做一件衣服要用多少布?計算曲邊梯形面積
不定積分――把分割成小段的東西求和
常數C到底能不能省略不寫?
定積分――不定積分的一小片段
Σ和∫有什麼不一樣?
小學學過的面積公式
定積分下的面積公式
定積分也能求圓和橢圓的面積
直角三角形――平行四邊和三角形面積的基底
平行四邊形面積公式推導
曲邊梯形的面積算法
第8章 包水餃學球體,皮是表面積,餡是體積
用圓面積算出圓周長
弧長怎麼算?把曲線分成很多小直線
驗證弧長公式
球體表面積的算法――剖成很多個圓周長
定積分下的體積公式
表面積的另一種算法
表面積的第三種算法――多重積分
水餃的皮多餡少怎麼辦?
第9章 魚缸水壓,是微積分與物理的結合
水壓的計算
數學是從物理而來的問題
會改變強度的壓力怎麼算?
第10章 酒精代謝還是中毒?只有微積分能算出來
從克卜勒到微分方程式
初探微分方程式
齊次微分方程式
一階線性微分方程式
微分方程式模型――研究動態事物的好方法
後記 數學之所以存在,不為了定義,而是思想
附錄1 本書使用的符號系統
附錄2 常用公式及其證明
附錄3 積分表
附錄4 多元函數的微積分簡介
參考文獻
推薦序二 大學數學的敲門磚,就看這一本╱周虎
推薦序三 從生活問題出發,自然而然學會微積分╱魏少華
前言 從生活學數學,輕鬆搞懂微積分
第1章 函數是一種對應關係,用「縮印」比方
影印店裡的函數和映射
用多元函數計算怎麼影印才划算
商品陳列就是集合的概念
即是筆又是塑膠的原子筆,怎麼分類?
第2章 斜率是微積分的基礎,化成火車時刻表就好懂
從行車軌跡到函數圖像
函數圖像和火車頭一樣,都是對稱的
數列的極限
探討極限的巴塞爾問題
兩個重要極限之一
兩個無窮小怎麼比大小?
兩個重要極限之二
極限是微積分最重要的基礎
第3章 用數學模型推測麵團的大小
無法直接解決問題時,就建立數學模型
最常見的建立模型方法――假設演繹法
做研究也講求直覺和運氣
建立模型時,先忽略會造成影響的變數
16個主要導數公式及推導範例
導數的運算法則,可以直接套用
複合函數的導數這樣算
反函數與反函數求導
第4章 彈珠的滾動速度與導數
導數存在的4大準則
洛爾定理
拉格朗日均值定理
伽利略的困惑
推導瞬間速度的泰勒展開
第5章 把股票走勢變成曲線――曲線擬合概念
曲線擬合――推導符合曲線的函數式
函數也能倒著學,先有圖像再求式子
垂直線不是函數
圓的標準式
橢圓的標準式
三次板條線――擬合不規律曲線的好工具
函數的單調性和駐點
極值點,股價走勢的反彈點
用曲線的凸凹性,模擬股票走勢的階段
凸凹性判斷方法
第6章 橋洞設計與不定積分
沒有準確座標的曲線擬合法
初識積分表
導來導去回到原型的不定積分
證明積分公式的代換法
更簡單的積分計算方法――分部積分法
微積分的樂趣――一題多解
第7章 做一件衣服要用多少布?計算曲邊梯形面積
不定積分――把分割成小段的東西求和
常數C到底能不能省略不寫?
定積分――不定積分的一小片段
Σ和∫有什麼不一樣?
小學學過的面積公式
定積分下的面積公式
定積分也能求圓和橢圓的面積
直角三角形――平行四邊和三角形面積的基底
平行四邊形面積公式推導
曲邊梯形的面積算法
第8章 包水餃學球體,皮是表面積,餡是體積
用圓面積算出圓周長
弧長怎麼算?把曲線分成很多小直線
驗證弧長公式
球體表面積的算法――剖成很多個圓周長
定積分下的體積公式
表面積的另一種算法
表面積的第三種算法――多重積分
水餃的皮多餡少怎麼辦?
第9章 魚缸水壓,是微積分與物理的結合
水壓的計算
數學是從物理而來的問題
會改變強度的壓力怎麼算?
第10章 酒精代謝還是中毒?只有微積分能算出來
從克卜勒到微分方程式
初探微分方程式
齊次微分方程式
一階線性微分方程式
微分方程式模型――研究動態事物的好方法
後記 數學之所以存在,不為了定義,而是思想
附錄1 本書使用的符號系統
附錄2 常用公式及其證明
附錄3 積分表
附錄4 多元函數的微積分簡介
參考文獻
書摘/試閱
影印店中的函數和映射
大家一定遇過這樣的問題:想查閱某些非常重要的文獻資料時,發現手頭上沒有,便只能去圖書館借閱。若想永久保存書中的某一章節,影印或許是個好辦法,但是對於某些專業領域的書籍來說,影印不僅浪費紙張,而且印出來的紙本文件也不方便攜帶,這時就會用到影印機的縮印功能。這本書的一開始,我們就來探討一下縮印需要多少張紙的問題。
如果我們使用一般的事務機或影印機,為了確保在縮印之後,文字既不會變形也能清楚辨識,可以選擇把原書的長和寬都縮短一半,再印刷在和原書一樣大小的紙張上。由此可以輕鬆計算出:在一張紙的一面上,可以印刷原書4 頁的內容。如果採用雙面印刷的話,在同一張紙上就可以印刷原書8 頁的內容,兩張紙可以印刷原書16 頁的內容,三張紙可以印刷原書24 頁的內容……
因此歸納出下列式子:
需影印的原書頁數=用於縮印的紙張數×8
利用等式的性質,可以在等式兩側同時除以8,於是就得到了:
需影印的原書頁數÷8=用於縮印的紙張數
經過再次整理,可以得到:
縮印用紙數=需印原書頁數/8
但這個算式存在一個問題:如果有一本100 頁的書籍需要縮印,那麼縮印用紙數量即為12.5。會出現小數,是因為縮印所需的最後一張紙只用了一半,但在現實生活中,就算只用了一半,也要按照一整張紙來計算。那麼就把上面的算式變成:
縮印用紙數=⌈需印原書頁數/8⌉
添加在等式右側的⌈⌉符號叫「向上取整」。意思是,當用了少於一張的紙時,不管用了這張紙的多少,都要按照一整張計算。當然,你也許會遇到一個慷慨的影印店老闆,說:「既然最後一張沒有印滿,那麼這張紙就不算在內了。」這時候就會出現下面的算式:
縮印用紙數=⌊需印原書頁數/8⌋
添加在等式右側的⌊⌋符號叫「向下取整」。它的意思是,當你非常幸運遇到慷慨的老闆,他會因為最後一張紙沒有印滿,而不向你收取該張紙的費用。
如果我們把上述問題用數學來表達,可以寫成如下形式:
設:用x 表示需印刷原頁數,y 表示縮印用紙數量,f(x) 表示用紙的數量和原有頁數之間的轉換關係,即有:
Y=f(x) f(x)= ⌈x/8⌉
當然你也可以把f(x) 去掉,寫成:
Y=⌈x/8⌉
這裡,我們將Y=⌈x/8⌉稱為「映射」,f(x) 則為「函數」。縮印一本書實際需要多少張紙,要看原書需要縮印的內容有多少頁,也就是上式中的x,所以x 就叫「自變數」,因為它是可以自由改變的。而代表縮印使用了多少張紙的y,雖然也會改變,但它是根據x 的改變而改變,所以把y 稱為「應變數」。
細心觀察就會發現,如果需要縮印的頁數有97 頁,就會印出13張紙,需要縮印的有98 頁時,還是需要印13 張紙。按這一規律推算,當需要縮印的頁數有104 頁時,我們還是需要13 張紙。也就是說,當需要縮印的頁數在97 頁至104 頁時,都需要用到13 張紙。由此可以歸納出:一個自變數所對應的應變數是唯一且明確的,但一個應變數卻可以被若干個自變數所對應。這就是函數和映射的性質。
商品陳列就是集合的概念
現在的文具琳琅滿目、種類繁多,文具店在陳列商品時,都會按照一定的規律來收納擺放。比如,把所有的筆放在同一個筆筒裡,把筆記本集中堆成一疊,把圓規和尺放在一起。
為了更方便顧客選購,也可以把筆分類:鉛筆根據筆芯的軟硬度不同,放在不同的筆筒裡,自動鉛筆單獨放一個筆筒,鋼筆、簽字筆、油性筆也要放在不同的筆筒,然後再把這些筆筒排列整齊放在一起。筆記本也按照尺寸大小分開疊起來,然後再整齊的放在貨架上。在數學上,這種收納和分類的方法稱為「集合」。
把所有文具放在一起,就會構成一個集合,可以根據自己的喜好,給這個集合取個名字,例如:文具集。文具集這三個字的含義,就是把文具店裡所有的文具放在一起。我們可以將所有文具簡單的分為筆、本、作圖工具和其他,如果把文具裡所有的筆挑出來,就可以構成一個新的集合,取名為筆集。
顯然,每個集合裡面的內容都是一些有共同特點的事物,因此建立集合的標準之一就是:集合中的事物要有明確的共同點。當然,所謂的共同點只要能自圓其說就可以了,比如也可以把塑膠尺和原子筆放在一個集合中,因為它們都是塑膠製品。而在筆集這個集合中,還可以再細分為鉛筆、鋼筆、原子筆……也就可以對應鉛筆集、鋼筆集、原子筆集……。
對於任意一支筆來說,它都屬於筆。如果使用數學語言來表達時,就會說這支筆是筆集裡的一個元素,所以任意一支筆都可以被稱為「元素」。拿一支HB 鉛筆來說,就可以說:HB 鉛筆是筆集的一個元素;也可以說:HB 鉛筆屬於筆集。如果用符號表示即為:
HB鉛筆∈筆集
當然,HB 鉛筆也屬於鉛筆集,也可以說:HB 鉛筆是鉛筆集的一個元素,用符號表示為:
HB鉛筆∈鉛筆集
如果要表示HB 鉛筆不屬於鋼筆集,也就是HB 鉛筆不是鋼筆集的一個元素,用符號表示為:
HB鉛筆∉鋼筆集
所有的鉛筆都是筆,但是鉛筆有很多種,筆也有好多種,這時候鉛筆就不能按照元素,而是要按照集合來考慮了。所以,我們認為鉛筆集是筆集的子集,其含義就是:所有的鉛筆都是筆,用符號表示即為:
鉛筆集⊆筆集
對於文具店來說,一模一樣的商品非常多,如果數量太多,就應該把它們放在倉庫裡,只留樣品放在外面展示。集合也是這樣,集合裡面的元素就相當於樣品,每個集合裡面的元素是不重複的。
有時,某些商品非常暢銷,以至於完售,甚至連樣品都賣出去了,在商家再次訂購之前處於缺貨,也就是「一個都沒有」的狀態,在數學上被稱為「空集」,符號為?。
在數學上有一個有趣的現象,就是把「什麼都沒有」也當成一種狀態或一個集合,而且任何集合都有可能什麼都沒有,也都包括什麼都沒有。這有點像是「任何數字加上0 都等於它自己」。所以,空集是任何一個集合的子集。
此外,任何一個集合也應該包括它自己。比如「筆集是筆集的子集」,這看起來很怪異,但其意為「所有筆都是筆」,而這在邏輯上也成立,所以任何一個集合也是它本身的子集。
為了避免表達得不清楚,於是數學家整理出了「真子集」的概念,即是:如果A 集合屬於B 集合,而且A、B 兩個集合不相等,那麼A 集合就是B 集合的真子集。再以鉛筆集和筆集為例,因為所有鉛筆都是筆,而鉛筆不能包括所有的筆(因為還有鋼筆、圓珠筆、記號筆、毛筆……),就會說:鉛筆集是筆集的真子集。用符號表示為:
鉛筆集⊂筆集
需要特別注意的是,在不同的書籍上,使用的符號也不統一,因為不同的數學家或者編者,慣用的符號系統不同。為了嚴謹起見,在證明時應該先說明自己使用的符號系統。
在專業的數學教材中,對於之前學習過的函數是這樣定義的:把定義域和值域看成兩個非空集合,函數是使得定義域集合中的每一個元素,都在值域集合中有唯一一個元素與之對應。我們把這種對應的法則稱為映射。
從文具店陳列商品的方法,我們就能夠藉由映射和之前學過的函數,把集合的概念緊密聯繫起來了。原本枯燥乏味的數學,也能夠透過生活中常見的實例,生動具體的展示出來。
無法直接解決問題時,就建立數學模型
雖然前面兩章是從實際問題出發,不過我們一直都在想像和假設中進行計算或推理,儘管這樣做可以很快理解函數和極限這類抽象的數學概念,但其缺點就是缺乏嚴謹性和說服力。要讓結論更具有說服力,就必須建立數學模型。
數學模型有一點像是拍電影時用的微縮模型,譬如拍攝古裝劇時,為了保護古蹟而不能在真正的古代皇宮拍攝時,劇組就需要建立一個模擬的皇宮。雖說這皇宮是個「冒牌貨」,但只要在視覺效果上沒有差別就可以了。
再比如說,拍攝某些危險的鏡頭時,要請特技演員代替;又或是需要拍攝地震、海嘯之類的災難片時,導演會採用拍攝微縮模型,或是藉由電腦合成技術營造真實的視覺體驗。
在科學研究過程中,也會出現無法直接研究真實事物的情況,比如研究進化論1 時,我們不可能讓地球上所有生物都退化成單細胞的狀態,當遇到這種棘手問題時,抽象模型就發揮了重要的作用。在數學上,我們建立的抽象模型就叫數學模型。
最常見的建立模型方法――假設演繹法
要如何建立數學模型,又該以怎樣的方式研究它?假設演繹法便是一種廣受青睞的方法。雖然這個方法有時會讓人陷入一些看似合理的陷阱,但在歷史上,假設演繹法仍幫大家解決了不少難題,例如奧地利科學家格雷高爾.孟德爾(Gregor Mendel)的遺傳因子理論。
假設演繹法的一般步驟可以被歸納為:觀察和分析現象、推理和想像、提出問題、演繹推理、提出假說、實驗驗證和得出結論。也有人將其歸納成更簡單的四步循環:實際現象―數學模型―模型的解答―現象的解答。用更科學的說法描述這一過程則是:顯示出實際現象和數學模型的關係。
從數學模型的角度來看,這個方法是歸納、抽象實際狀況,所以,數學模型雖然源自於實際,但更為抽象。如果從實際現象來觀察數學模型的解答,就需要經過實際狀況的檢驗,並且回頭解釋實際現象,因此也有學者將這整個過程歸納為「實踐―理論―實踐的回圈」。
做研究也講求直覺和運氣
無論是研究數學模型還是數學的其他分支,直覺和運氣都是關鍵。在數學研究中,如果一開始的思考方向就和正確方向大相徑庭,那就很難得到正確的結論。當然直覺也不是憑空產生的,需要累積豐富的經驗和知識,並能熟練的多方面思考。
研究數學還需要一定的運氣,比如古希臘天文學家克勞狄烏斯.托勒密(Claudius Ptolemaeus)就是因為運氣欠佳,才會提出錯誤的學說―地心說。根據他的學說,地球處於宇宙中心恆定靜止的位置,從地球向外依次有月球、水星、金星、太陽、火星、木星和土星等,並且都在各自的軌道上繞著地球運動。
在今天看來,這樣的觀點排除其歷史價值6 之外,顯然滑稽可笑,但是在科學研究水準和條件有限的情況下,這樣現在能夠被輕易推翻的理論,在當時卻是學術的權威。類似的例子也曾出現在牛頓、湯瑪斯.愛迪生(Thomas Alva Edison)這樣的大科學家和發明家身上。我們不禁感嘆,如果他們的運氣再稍微好一點,這世界不知道還會更先進多少!所以,對於研究數學和科學的人來說,「運氣也是實力的一部分」一點都沒錯。
建立模型時,先忽略會造成影響的變數
在現實世界中,絕大多數的現象都存在隨機性、動態性以及非線性7 的特質。這裡為了研究方便,我們只取比較容易被觀察和控制的屬性,來研究特定現象,實際上就是簡化和抽象該現象。譬如,不考慮麵團內酵母的品質對麵團大小的影響。
童話裡的數學模型
有若干個巫婆和一個公主共同居住在一個小島上。如果有巫婆吃掉公主,這個巫婆就會變成公主,但她同時也會失去法術,並且有可能被其他巫婆吃掉。假如所有巫婆都希望能變成公主,也都能夠保命,那麼在有20 個巫婆的情況下,公主能不能安全的活在島上?
提示:和第1 章中提到的海盜問題一樣,我們還是來建立一個比較簡單的模型,然後慢慢將其複雜化,這樣就可以知道答案了。
從只有一個巫婆開始推演
假如只有一個巫婆和公主生活在島上,那麼巫婆肯定會吃掉公主。因為她知道吃掉公主、失去法術之後,也沒有人能威脅她了。
如果有兩個巫婆和公主一同生活在島上,公主安全嗎?答案是肯定的。因為公主被吃掉之後,就會變成一個公主和一個巫婆的情況,那麼先吃掉公主的巫婆,就會被另一個巫婆吃掉。為了保命,兩個巫婆都不敢去吃公主,所以公主會是安全的。
接下來再讓模型複雜一點。如果有三個巫婆,她們之中肯定會有人先吃掉公主。因為這樣就變回了上一段中的情況,剩下兩個巫婆誰也不敢吃她,因為先吃她的巫婆肯定會被另一個吃掉。
然後再讓模型更複雜一點,當有四個巫婆時,如果有誰先吃了公主,那麼馬上就會變成三個巫婆的情況,這時誰也不敢先吃公主,所以公主是安全的。
根據這樣的規律,當島上有奇數個巫婆時,就會有巫婆先下手為強吃掉公主;當島上的巫婆是偶數個時,所有巫婆都不敢先吃公主,以避免變為奇數個巫婆後自己會被吃掉。
由此我們就得出了這樣的結論:當島上有偶數個巫婆時,公主是安全的。題目中說島上有20 個巫婆,而20 是偶數,所以公主能安全的生活在島上。
大家一定遇過這樣的問題:想查閱某些非常重要的文獻資料時,發現手頭上沒有,便只能去圖書館借閱。若想永久保存書中的某一章節,影印或許是個好辦法,但是對於某些專業領域的書籍來說,影印不僅浪費紙張,而且印出來的紙本文件也不方便攜帶,這時就會用到影印機的縮印功能。這本書的一開始,我們就來探討一下縮印需要多少張紙的問題。
如果我們使用一般的事務機或影印機,為了確保在縮印之後,文字既不會變形也能清楚辨識,可以選擇把原書的長和寬都縮短一半,再印刷在和原書一樣大小的紙張上。由此可以輕鬆計算出:在一張紙的一面上,可以印刷原書4 頁的內容。如果採用雙面印刷的話,在同一張紙上就可以印刷原書8 頁的內容,兩張紙可以印刷原書16 頁的內容,三張紙可以印刷原書24 頁的內容……
因此歸納出下列式子:
需影印的原書頁數=用於縮印的紙張數×8
利用等式的性質,可以在等式兩側同時除以8,於是就得到了:
需影印的原書頁數÷8=用於縮印的紙張數
經過再次整理,可以得到:
縮印用紙數=需印原書頁數/8
但這個算式存在一個問題:如果有一本100 頁的書籍需要縮印,那麼縮印用紙數量即為12.5。會出現小數,是因為縮印所需的最後一張紙只用了一半,但在現實生活中,就算只用了一半,也要按照一整張紙來計算。那麼就把上面的算式變成:
縮印用紙數=⌈需印原書頁數/8⌉
添加在等式右側的⌈⌉符號叫「向上取整」。意思是,當用了少於一張的紙時,不管用了這張紙的多少,都要按照一整張計算。當然,你也許會遇到一個慷慨的影印店老闆,說:「既然最後一張沒有印滿,那麼這張紙就不算在內了。」這時候就會出現下面的算式:
縮印用紙數=⌊需印原書頁數/8⌋
添加在等式右側的⌊⌋符號叫「向下取整」。它的意思是,當你非常幸運遇到慷慨的老闆,他會因為最後一張紙沒有印滿,而不向你收取該張紙的費用。
如果我們把上述問題用數學來表達,可以寫成如下形式:
設:用x 表示需印刷原頁數,y 表示縮印用紙數量,f(x) 表示用紙的數量和原有頁數之間的轉換關係,即有:
Y=f(x) f(x)= ⌈x/8⌉
當然你也可以把f(x) 去掉,寫成:
Y=⌈x/8⌉
這裡,我們將Y=⌈x/8⌉稱為「映射」,f(x) 則為「函數」。縮印一本書實際需要多少張紙,要看原書需要縮印的內容有多少頁,也就是上式中的x,所以x 就叫「自變數」,因為它是可以自由改變的。而代表縮印使用了多少張紙的y,雖然也會改變,但它是根據x 的改變而改變,所以把y 稱為「應變數」。
細心觀察就會發現,如果需要縮印的頁數有97 頁,就會印出13張紙,需要縮印的有98 頁時,還是需要印13 張紙。按這一規律推算,當需要縮印的頁數有104 頁時,我們還是需要13 張紙。也就是說,當需要縮印的頁數在97 頁至104 頁時,都需要用到13 張紙。由此可以歸納出:一個自變數所對應的應變數是唯一且明確的,但一個應變數卻可以被若干個自變數所對應。這就是函數和映射的性質。
商品陳列就是集合的概念
現在的文具琳琅滿目、種類繁多,文具店在陳列商品時,都會按照一定的規律來收納擺放。比如,把所有的筆放在同一個筆筒裡,把筆記本集中堆成一疊,把圓規和尺放在一起。
為了更方便顧客選購,也可以把筆分類:鉛筆根據筆芯的軟硬度不同,放在不同的筆筒裡,自動鉛筆單獨放一個筆筒,鋼筆、簽字筆、油性筆也要放在不同的筆筒,然後再把這些筆筒排列整齊放在一起。筆記本也按照尺寸大小分開疊起來,然後再整齊的放在貨架上。在數學上,這種收納和分類的方法稱為「集合」。
把所有文具放在一起,就會構成一個集合,可以根據自己的喜好,給這個集合取個名字,例如:文具集。文具集這三個字的含義,就是把文具店裡所有的文具放在一起。我們可以將所有文具簡單的分為筆、本、作圖工具和其他,如果把文具裡所有的筆挑出來,就可以構成一個新的集合,取名為筆集。
顯然,每個集合裡面的內容都是一些有共同特點的事物,因此建立集合的標準之一就是:集合中的事物要有明確的共同點。當然,所謂的共同點只要能自圓其說就可以了,比如也可以把塑膠尺和原子筆放在一個集合中,因為它們都是塑膠製品。而在筆集這個集合中,還可以再細分為鉛筆、鋼筆、原子筆……也就可以對應鉛筆集、鋼筆集、原子筆集……。
對於任意一支筆來說,它都屬於筆。如果使用數學語言來表達時,就會說這支筆是筆集裡的一個元素,所以任意一支筆都可以被稱為「元素」。拿一支HB 鉛筆來說,就可以說:HB 鉛筆是筆集的一個元素;也可以說:HB 鉛筆屬於筆集。如果用符號表示即為:
HB鉛筆∈筆集
當然,HB 鉛筆也屬於鉛筆集,也可以說:HB 鉛筆是鉛筆集的一個元素,用符號表示為:
HB鉛筆∈鉛筆集
如果要表示HB 鉛筆不屬於鋼筆集,也就是HB 鉛筆不是鋼筆集的一個元素,用符號表示為:
HB鉛筆∉鋼筆集
所有的鉛筆都是筆,但是鉛筆有很多種,筆也有好多種,這時候鉛筆就不能按照元素,而是要按照集合來考慮了。所以,我們認為鉛筆集是筆集的子集,其含義就是:所有的鉛筆都是筆,用符號表示即為:
鉛筆集⊆筆集
對於文具店來說,一模一樣的商品非常多,如果數量太多,就應該把它們放在倉庫裡,只留樣品放在外面展示。集合也是這樣,集合裡面的元素就相當於樣品,每個集合裡面的元素是不重複的。
有時,某些商品非常暢銷,以至於完售,甚至連樣品都賣出去了,在商家再次訂購之前處於缺貨,也就是「一個都沒有」的狀態,在數學上被稱為「空集」,符號為?。
在數學上有一個有趣的現象,就是把「什麼都沒有」也當成一種狀態或一個集合,而且任何集合都有可能什麼都沒有,也都包括什麼都沒有。這有點像是「任何數字加上0 都等於它自己」。所以,空集是任何一個集合的子集。
此外,任何一個集合也應該包括它自己。比如「筆集是筆集的子集」,這看起來很怪異,但其意為「所有筆都是筆」,而這在邏輯上也成立,所以任何一個集合也是它本身的子集。
為了避免表達得不清楚,於是數學家整理出了「真子集」的概念,即是:如果A 集合屬於B 集合,而且A、B 兩個集合不相等,那麼A 集合就是B 集合的真子集。再以鉛筆集和筆集為例,因為所有鉛筆都是筆,而鉛筆不能包括所有的筆(因為還有鋼筆、圓珠筆、記號筆、毛筆……),就會說:鉛筆集是筆集的真子集。用符號表示為:
鉛筆集⊂筆集
需要特別注意的是,在不同的書籍上,使用的符號也不統一,因為不同的數學家或者編者,慣用的符號系統不同。為了嚴謹起見,在證明時應該先說明自己使用的符號系統。
在專業的數學教材中,對於之前學習過的函數是這樣定義的:把定義域和值域看成兩個非空集合,函數是使得定義域集合中的每一個元素,都在值域集合中有唯一一個元素與之對應。我們把這種對應的法則稱為映射。
從文具店陳列商品的方法,我們就能夠藉由映射和之前學過的函數,把集合的概念緊密聯繫起來了。原本枯燥乏味的數學,也能夠透過生活中常見的實例,生動具體的展示出來。
無法直接解決問題時,就建立數學模型
雖然前面兩章是從實際問題出發,不過我們一直都在想像和假設中進行計算或推理,儘管這樣做可以很快理解函數和極限這類抽象的數學概念,但其缺點就是缺乏嚴謹性和說服力。要讓結論更具有說服力,就必須建立數學模型。
數學模型有一點像是拍電影時用的微縮模型,譬如拍攝古裝劇時,為了保護古蹟而不能在真正的古代皇宮拍攝時,劇組就需要建立一個模擬的皇宮。雖說這皇宮是個「冒牌貨」,但只要在視覺效果上沒有差別就可以了。
再比如說,拍攝某些危險的鏡頭時,要請特技演員代替;又或是需要拍攝地震、海嘯之類的災難片時,導演會採用拍攝微縮模型,或是藉由電腦合成技術營造真實的視覺體驗。
在科學研究過程中,也會出現無法直接研究真實事物的情況,比如研究進化論1 時,我們不可能讓地球上所有生物都退化成單細胞的狀態,當遇到這種棘手問題時,抽象模型就發揮了重要的作用。在數學上,我們建立的抽象模型就叫數學模型。
最常見的建立模型方法――假設演繹法
要如何建立數學模型,又該以怎樣的方式研究它?假設演繹法便是一種廣受青睞的方法。雖然這個方法有時會讓人陷入一些看似合理的陷阱,但在歷史上,假設演繹法仍幫大家解決了不少難題,例如奧地利科學家格雷高爾.孟德爾(Gregor Mendel)的遺傳因子理論。
假設演繹法的一般步驟可以被歸納為:觀察和分析現象、推理和想像、提出問題、演繹推理、提出假說、實驗驗證和得出結論。也有人將其歸納成更簡單的四步循環:實際現象―數學模型―模型的解答―現象的解答。用更科學的說法描述這一過程則是:顯示出實際現象和數學模型的關係。
從數學模型的角度來看,這個方法是歸納、抽象實際狀況,所以,數學模型雖然源自於實際,但更為抽象。如果從實際現象來觀察數學模型的解答,就需要經過實際狀況的檢驗,並且回頭解釋實際現象,因此也有學者將這整個過程歸納為「實踐―理論―實踐的回圈」。
做研究也講求直覺和運氣
無論是研究數學模型還是數學的其他分支,直覺和運氣都是關鍵。在數學研究中,如果一開始的思考方向就和正確方向大相徑庭,那就很難得到正確的結論。當然直覺也不是憑空產生的,需要累積豐富的經驗和知識,並能熟練的多方面思考。
研究數學還需要一定的運氣,比如古希臘天文學家克勞狄烏斯.托勒密(Claudius Ptolemaeus)就是因為運氣欠佳,才會提出錯誤的學說―地心說。根據他的學說,地球處於宇宙中心恆定靜止的位置,從地球向外依次有月球、水星、金星、太陽、火星、木星和土星等,並且都在各自的軌道上繞著地球運動。
在今天看來,這樣的觀點排除其歷史價值6 之外,顯然滑稽可笑,但是在科學研究水準和條件有限的情況下,這樣現在能夠被輕易推翻的理論,在當時卻是學術的權威。類似的例子也曾出現在牛頓、湯瑪斯.愛迪生(Thomas Alva Edison)這樣的大科學家和發明家身上。我們不禁感嘆,如果他們的運氣再稍微好一點,這世界不知道還會更先進多少!所以,對於研究數學和科學的人來說,「運氣也是實力的一部分」一點都沒錯。
建立模型時,先忽略會造成影響的變數
在現實世界中,絕大多數的現象都存在隨機性、動態性以及非線性7 的特質。這裡為了研究方便,我們只取比較容易被觀察和控制的屬性,來研究特定現象,實際上就是簡化和抽象該現象。譬如,不考慮麵團內酵母的品質對麵團大小的影響。
童話裡的數學模型
有若干個巫婆和一個公主共同居住在一個小島上。如果有巫婆吃掉公主,這個巫婆就會變成公主,但她同時也會失去法術,並且有可能被其他巫婆吃掉。假如所有巫婆都希望能變成公主,也都能夠保命,那麼在有20 個巫婆的情況下,公主能不能安全的活在島上?
提示:和第1 章中提到的海盜問題一樣,我們還是來建立一個比較簡單的模型,然後慢慢將其複雜化,這樣就可以知道答案了。
從只有一個巫婆開始推演
假如只有一個巫婆和公主生活在島上,那麼巫婆肯定會吃掉公主。因為她知道吃掉公主、失去法術之後,也沒有人能威脅她了。
如果有兩個巫婆和公主一同生活在島上,公主安全嗎?答案是肯定的。因為公主被吃掉之後,就會變成一個公主和一個巫婆的情況,那麼先吃掉公主的巫婆,就會被另一個巫婆吃掉。為了保命,兩個巫婆都不敢去吃公主,所以公主會是安全的。
接下來再讓模型複雜一點。如果有三個巫婆,她們之中肯定會有人先吃掉公主。因為這樣就變回了上一段中的情況,剩下兩個巫婆誰也不敢吃她,因為先吃她的巫婆肯定會被另一個吃掉。
然後再讓模型更複雜一點,當有四個巫婆時,如果有誰先吃了公主,那麼馬上就會變成三個巫婆的情況,這時誰也不敢先吃公主,所以公主是安全的。
根據這樣的規律,當島上有奇數個巫婆時,就會有巫婆先下手為強吃掉公主;當島上的巫婆是偶數個時,所有巫婆都不敢先吃公主,以避免變為奇數個巫婆後自己會被吃掉。
由此我們就得出了這樣的結論:當島上有偶數個巫婆時,公主是安全的。題目中說島上有20 個巫婆,而20 是偶數,所以公主能安全的生活在島上。
主題書展
更多
主題書展
更多書展今日66折
您曾經瀏覽過的商品
購物須知
為了保護您的權益,「三民網路書店」提供會員七日商品鑑賞期(收到商品為起始日)。
若要辦理退貨,請在商品鑑賞期內寄回,且商品必須是全新狀態與完整包裝(商品、附件、發票、隨貨贈品等)否則恕不接受退貨。